您当前的位置:首页 > 学习 > 阅览室

数学符号 参考手册大全

时间:05-19来源:作者:点击数:

数学符号手册

1、几何符号

  ⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △

2、代数符号

  ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶

3、运算符号

  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

4、集合符号

  ∪ ∩ ∈

5、特殊符号

  ∑ π(圆周率)

6、推理符号

  |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←

  ↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨

  &; §

  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

  Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω

  α β γ δ ε ζ η θ ι κ λ μ ν

  ξ ο π ρ σ τ υ φ χ ψ ω

  Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ

  ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ

  ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮

  ∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥

  ⊿ ⌒ ℃

  指数0123:o123

7、数量符号

  如:i,2+i,a,x,自然对数底e,圆周率π。

8、关系符号

  如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆ ⊂ ⊇ ⊃”是“包含”符号等。

9、结合符号

  如小括号“()”中括号“[]”,大括号“{}”横线“—”

10、性质符号

  如正号“+”,负号“-”,绝对值符号“| |”正负号“±”

11、省略符号

  如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),

  ∵因为,(一个脚站着的,站不住)

  ∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

12、排列组合符号

  C-组合数

  A-排列数

  N-元素的总个数

  R-参与选择的元素个数

  !-阶乘 ,如5!=5×4×3×2×1=120

  C-Combination- 组合

  A-Arrangement-排列

13、离散数学符号

  ├ 断定符(公式在L中可证)

  ╞ 满足符(公式在E上有效,公式在E上可满足)

  ┐ 命题的“非”运算

  ∧ 命题的“合取”(“与”)运算

  ∨ 命题的“析取”(“或”,“可兼或”)运算

  → 命题的“条件”运算

  A<=>B 命题A 与B 等价关系

  A=>B 命题 A与 B的蕴涵关系

  A* 公式A 的对偶公式

  wff 合式公式

  iff 当且仅当

  ↑ 命题的“与非” 运算( “与非门” )

  ↓ 命题的“或非”运算( “或非门” )

  □ 模态词“必然”

  ◇ 模态词“可能”

  φ 空集

  ∈ 属于(??不属于)

  P(A) 集合A的幂集

  |A| 集合A的点数

  R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”

  (或下面加 ≠) 真包含

  ∪ 集合的并运算

  ∩ 集合的交运算

  - (~) 集合的差运算

  〡 限制

  [X](右下角R) 集合关于关系R的等价类

  A/ R 集合A上关于R的商集

  [a] 元素a 产生的循环群

  I (i大写) 环,理想

  Z/(n) 模n的同余类集合

  r(R) 关系 R的自反闭包

  s(R) 关系 的对称闭包

  CP 命题演绎的定理(CP 规则)

  EG 存在推广规则(存在量词引入规则)

  ES 存在量词特指规则(存在量词消去规则)

  UG 全称推广规则(全称量词引入规则)

  US 全称特指规则(全称量词消去规则)

  R 关系

  r 相容关系

  R○S 关系 与关系 的复合

  domf 函数 的定义域(前域)

  ranf 函数 的值域

  f:X→Y f是X到Y的函数

  GCD(x,y) x,y最大公约数

  LCM(x,y) x,y最小公倍数

  aH(Ha) H 关于a的左(右)陪集

  Ker(f) 同态映射f的核(或称 f同态核)

  [1,n] 1到n的整数集合

  d(u,v) 点u与点v间的距离

  d(v) 点v的度数

  G=(V,E) 点集为V,边集为E的图

  W(G) 图G的连通分支数

  k(G) 图G的点连通度

  △(G) 图G的最大点度

  A(G) 图G的邻接矩阵

  P(G) 图G的可达矩阵

  M(G) 图G的关联矩阵

  C 复数集

  N 自然数集(包含0在内)

  N* 正自然数集

  P 素数集

  Q 有理数集

  R 实数集

  Z 整数集

  Set 集范畴

  Top 拓扑空间范畴

  Ab 交换群范畴

  Grp 群范畴

  Mon 单元半群范畴

  Ring 有单位元的(结合)环范畴

  Rng 环范畴

  CRng 交换环范畴

  R-mod 环R的左模范畴

  mod-R 环R的右模范畴

  Field 域范畴

  Poset 偏序集范畴


集合符号

∪ ∩ ∈ ⊆ ⊂ ⊇ ⊃ ∨ ∧ ∞ Φ

 ∪  并

 ∩  交

 ⊂  A属于B

 ⊃  A包括B

 ∈  a∈A,a是A的元素

 ⊆  A⊆B,A不大于B

 ⊇  A⊇B,A不小于B

 Φ  空集

 R  实数

 N  自然数

 Z  整数

 Z+ 正整数

 Z-  负整数


常用数学符号读法

大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
λ lambda lambda 兰姆达
Μ μ mu miu
Ν ν nu niu
Ξ ξ xi ksi 可塞
Ο ο omicron omikron 奥密可戎
π pi pai
Ρ ρ rho rou
σ sigma sigma 西格马
Τ τ tau tau
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai
Χ χ chi khai
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽

数学符号的种类

数量符号

  如:i,2+i,a,x,自然对数底e,圆周率π。

运算符号

  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

关系符号

  如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等。

结合符号

  如小括号“()”中括号“[]”,大括号“{}”横线“—”

性质符号

  如正号“+”,负号“-”,绝对值符号“| |”正负号“±”

省略符号

  如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),

  ∵因为,(一个脚站着的,站不住)

  ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。

排列组合符号

  C-组合数

  A-排列数

  N-元素的总个数

  R-参与选择的元素个数

  !-阶乘,如5!=5×4×3×2×1=120

  C-Combination-组合

  A-Arrangement-排列


数学符号中英文名称大全

+  plus 加号;正号

-  minus 减号;负号

± plus or minus 正负号

× is multiplied by 乘号

÷ is divided by 除号

= is equal to 等于号

≠ is not equal to 不等于号

≡ is equivalent to 全等于号

≌ is equal to or approximately equal to 等于或约等于号

≈ is approximately equal to 约等于号

< is less than 小于号

> is more than 大于号

≮ is not less than 不小于号

≯ is not more than 不大于号

≤ is less than or equal to 小于或等于号

≥ is more than or equal to 大于或等于号

%  per cent 百分之…

‰ per mill 千分之…

∞ infinity 无限大号

∝ varies as 与…成比例

√ (square) root 平方根

∵ since; because 因为

∴ hence 所以

∷ equals, as (proportion) 等于,成比例

∠ angle 角

⌒ semicircle 半圆

⊙ circle 圆

○ circumference 圆周

π pi 圆周率

△ triangle 三角形

⊥ perpendicular to 垂直于

∪ union of 并,合集

∩ intersection of 交,通集

∫ the integral of …的积分

∑ (sigma) summation of 总和

° degree 度

′ minute 分

″ second 秒

℃ Celsius system 摄氏度


常用数学符号

常用数学符号

+-×÷﹢﹣±/=≈≡≠∧∨∑∏∪∩∈⊙⌒⊥∥∠∽≌<>≤≥≮≯∧∨√﹙﹚[]﹛﹜∫∮∝∞⊙∏º¹²³⁴ⁿ₁₂₃₄·∶½⅓⅔¼¾⅛⅜⅝⅞∴∵∷αβγδεζηθικλμνξοπρστυφχψω%‰℅°℃℉′″¢〒¤○㎎㎏㎜㎝㎞㎡㎥㏄㏎mlmol㏕Pa$£¥㏒㏑壹贰叁肆伍陆柒捌玖拾微毫厘分百千万亿兆吉

几何符号

⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △

代数符号

∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶

运算符号

× ÷ √ ±

集合符号

∪ ∩ ∈ ⊆ ⊂ ⊇ ⊃

特殊符号

∑ π(圆周率)

推理符号

|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨


微积分:常用公式、微分方程、级数

微积分

直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。

一.基本初等函数求导公式

函数的和、差、积、商的求导法则

反函数求导法则

复合函数求导法则

二、基本积分表

常用凑微分公式

常用的求导和定积分公式

分部积分法

微分方程

级数收敛与发散

微分中值定理

令f(x)为连续且光滑,任取其上两点(a, f(a))与(b, f(b)),a < b,那么在这两端点之间必定存在一点(c, f(c)), a < c < b,使得过c的切线斜率等于该二端点割线的斜率,即

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门