UyHiP上个月的题目:把所有大于 1 的自然数划分成两个集合,证明至少能在其中一个集合里找到互不相同的三个数 a 、 b 、 c 满足 a^b=c 。然后,试着给出一种划分,使得只有其中一个集合里存在这样的三元组。
Update: 后一个问题要求两个集合都是无限集。感谢网友 Triple.J 的提醒。
证明:如果集合 A 里只有有限个数,那就在集合 B 里选两个比集合 A 中的最大数还大的数 a 和 b ,显然 a^b 也在集合 B 里。类似的,若集合 B 里只有有限个数,我们立即可知 A 中存在满足 a^b=c 的三元组。因此,我们只需要讨论两个集合里都有无穷多个数的情况。
从集合 A 里选一个数 x ,从集合 B 里选一个数 y 。无妨假设 xy 在集合 A 中。在集合 A 中选一个比 xy 大的数 r 。由于集合 A 是无限大的,因此这样的数总存在。由于 r 比 xy 大,因此 x 、 y 、 xy 、 r 、 r^x 、 r^(xy) 这六个数两两不同。为了避免在同一集合里出现满足要求的三元组, r^x 和 r^(xy) 都必须在集合B里面,但这样的话, r^x 、 y 和 r^(xy) 就成了符合要求的三元组了。
后一个问题则出奇的简单:把所有素数放进一个集合,所有合数放进另一个集合。显然,一个素数不可能是另一个素数的整数次幂。
这个月的题目非常有意思,点击这里围观。