您当前的位置:首页 > 学习 > 阅览室

Runge现象:多项式插值不见得次数越高越准确

时间:12-09来源:作者:点击数:

今天学到了一个新的名词,Runge现象。1901年,Carl David Tolmé Runge意外地发现,用差值插值多项式逼近函数f(x)=1/(1+25x^2)时出现了一些反常的现象。如图,灰色的粗线就是Runge函数在[-1,1]上的图象。蓝色虚线是过[-1,1]上的6个等距点所得到的5次多项式,红色虚线是过[-1,1]上的10个等距点所得到的9次多项式。可以看到,当次数变高时,插值多项式反而变得更不准确。

事实上,当次数n趋于无穷时,该区间上的最大误差值也将趋于无穷大!

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门