您当前的位置:首页 > 学习 > 阅览室

图表的重要性:Anscombe的四组数据

时间:12-09来源:作者:点击数:
CDSY,CDSY.XYZ

1973年,统计学家F.J. Anscombe构造出了四组奇特的数据。它告诉人们,在分析数据之前,描绘数据所对应的图像有多么的重要。

Anscombe’s Quartet
I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

这四组数据中,x值的平均数都是9.0,y值的平均数都是7.5;x值的方差都是10.0,y值的方差都是3.75;它们的相关度都是0.816,线性回归线都是y=3+0.5x。单从这些统计数字上看来,四组数据所反映出的实际情况非常相近,而事实上,这四组数据有着天壤之别。

把它们描绘在图表中,你会发现这四组数据是四种完全不同的情况。第一组数据是大多人看到上述统计数字的第一反应,是最“正常”的一组数据;第二组数据所反映的事实上是一个精确的二次函数关系,只是在错误地应用了线性模型后,各项统计数字与第一组数据恰好都相同;第三组数据描述的是一个精确的线性关系,只是这里面有一个异常值,它导致了上述各个统计数字,尤其是相关度值的偏差;第四组数据则是一个更极端的例子,其异常值导致了平均数、方差、相关度、线性回归线等所有统计数字全部发生偏差。

来源:

http://www.reddit.com/r/math/comments/9fz3u/4_datasets_that_demonstrate_the_importance_of/

http://en.wikipedia.org/wiki/Anscombe’s_quartet

CDSY,CDSY.XYZ
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐