光纤的发明,带动了通信领域内的革命,如果没有光纤提供大容量的高速通道,互联网也只能停留在理论设想阶段。如果说,20世纪是电的时代,那么21世纪就是光的时代。光到底是如何做到能通信的?下面和小编一起学习一下光通信相关的基础知识吧。
Part1.光传播基础知识
认识光波
光波实际上是一种电磁波,在自由空间中电磁波的波长与频率成反比,两者乘积等于光速,即:
将电磁波的波长或频率按顺序排列组成电磁波谱,根据波长或频率的不同,电磁波可以分为射线区、紫外线区、可见光区、红外线区、微波区以及无线电波区和长波区。而用于通信的波段主要是红外线区、微波区以及无线电波区,下面一幅图让大家分分钟明白通信波段划分及对应的传播媒质。
本文的主角“光纤通信”使用的是红外线波段的光波。提到这一点大家可能会疑问,为什么一定是红外波段?这个问题跟光纤材料也就是二氧化硅玻璃的光传输损耗有关,接下来就需要先了解光纤是如何传输光的。
光的折射、反射和全反射
光从一种物质射向另一种物质时,在两种物质的交界面会发生折射和反射,且折射角度随入射光的角度增大而增大。如下图中①→②。当入射角达到或超过某一角度时,折射光会消失,入射光全部反射回来,这就是光的全反射,如下图中的②→③。
不同的材料折射率不同,因此光在不同介质中传播速率不同。折射率用n表示,n=c/v,c为真空中速度,v为介质中的传播速度。折射率较高的介质称为光密介质,折射率较低的称为光疏介质。发生全反射的两个条件为:由光密介质传输到光疏介质
入射角大于或等于全反射临界角为了避免光信号泄露和降低传输损耗,光纤中的光传输都是发生在全反射条件下的。
Part2.光传播媒质(光纤)介绍
光纤结构有了全反射光传播的基础知识,就很容易理解光纤的设计结构了。光纤裸纤分为三层:第一层纤芯:位于光纤的中心部位,成分为高纯度的二氧化硅即玻璃。芯径一般为9-10微米(单模)、50或62.5微米(多模)。纤芯折射率较高,用来传送光。第二层包层:位于纤芯的周围,成分也是二氧化硅玻璃(直径一般为125微米)。包层的折射率较低,与纤芯一起形成全反射条件。第三层涂覆层:最外层是加强用的树脂涂层。保护层材料强度大,能承受较大冲击,保护光纤不受水汽的侵蚀和机械擦伤。
光传输损耗光纤传输损耗是影响光纤通信质量的一个很重要的因素。造成光信号衰减的主要因素有:材料的吸收损耗、传输时的散射损耗以及其他包括光纤弯曲、受挤压、对接损耗等因素造成的损耗。
光的波长不同,在光纤中的传输损耗也不同,为了尽可能减小损耗,保证传输效果,科学家们一直在致力于寻找最合适的光。1260nm~1360nm波长范围的光,由色散导致的信号失真最小,吸收损耗也最低,早期这一波长范围被采纳为的光通信波段,后来经过漫长的摸索和实践,专家们逐渐总结出一个低损耗波长(1260nm~1625nm)区域,这个波长区域范围的光,最适合在光纤中传输。所以光纤通信使用的光波一般都是红外波段的。
光纤分类 | 对比项 | |||||||
光纤成本 | 传输设备要求 | 衰减 | 传输波长 | 使用便捷性 | 传输距离 | 带宽 | 结论 | |
多模光纤:传输多种模式,但模间色散比较大,限制了传输数字信号的频率,而且随传输距离的增加这种限制会更加严重。因此多模光纤传输的距离比较近,一般只有几公里。 | 成本高 | 设备要求低、设备成本低 | 高 | 850nm-1300nm | 芯径较大,易于处理 | 本地网络 (小于2km) |
带宽有限 | 光纤成本更高但是网络开通相对成本低 |
单模光纤:纤径很小,理论上只能传输一个模式,适用于远程通信。 | 成本较低 | 设备要求高,光源要求高 | 低 | 1260nm-1640nm | 使用连接更复杂 | 接入网/中长距离网络 (大于200km) |
带宽几乎无限 | 性能更高,但是建立网络成本更高 |
Part3.光纤通信系统工作原理
光纤通信系统平常使用的手机、电脑等通信产品,发送的信息是以电信号的方式存在。进行光通信时,首先要将电信号转换为光信号,通过光纤光缆传输后再将光信号转换成电信号,达到信息传递的目的。基本的光通信系统由光发送机、光接收机以及传输光的光纤回路构成,为了保证长距离信号传输质量和提升传输带宽,一般还会用到光中继器以及复用器。
下面简单介绍一下光纤通信系统中每个器件的工作原理。
光发送机:将电信号转换成光信号,主要由信号调制器和光源组成。
信号复用器:将多个不同波长的光载波信号,耦合到同一根光纤中进行传输,达到传输容量倍增的效果。
光中继器:传输过程中,信号的波形和强度会发生劣化,因此需要将波形复原到原信号那样整齐的波形,加大光强。
信号解复用器:将复用的信号分解成原来的单独信号。
光接收机:将接收的光信号转换成电信号,主要由光电探测器和解调器组成。
Part4.光通信的优点与应用
光通信的优点
中继距离长,经济节能
假设传输10 Gbps(每秒100亿个0或1信号)的信息,如果使用电通信的话,每隔几百米就要进中继处理,调整一次信号。与此相比,使用光通信的话,中继距离可达100千米以上。调整信号的次数越少,成本越低,另一方面,光纤的材料是二氧化硅,储量丰富且成本比铜线低得多,因此光通信具有经济节能的效果。
信息传递快速,通信质量高
比如说,现在和国外的朋友通话或上网聊天时,不像以前那样声音会滞后。在电通信时代,国际通信主要是通过人造卫星作为中继传输,传输路径会变长,信号到达较慢。而光通信借助于海底光缆,缩短了传输距离,因此信息传递更加快速。因此使用光通信能实现与海外更畅通的通信。
抗干扰能力强,保密性好
电通信会因电磁干扰出现错误,导致通信质量下降。但是,光通信不会受到电噪声的影响,因此更加安全可靠。并且由于全反射工作原理,信号完全束缚在光纤中进行传输,所以保密性良好。
传输容量大
一般电通信只能传输10Gbps(每秒100亿个0或1信号)的信息量,与此相比,光通信可以传输1Tbps(1万亿个0或1信号)信息量。
光通信的应用光通信的优点众多,发展至今光通信已经融入了我们每个人的生活每一个角落。手机、电脑以及IP电话等使用网络的设备,将每个人与其所在地区、整个国家联系起来,甚至连接至全球通信网。比如说,电脑和手机发出的信号聚集在本地通信运营商的基站和网络供应商设备中,再通过海底光缆中的光纤传输至世界各地。
视频通话、网购、电游、追剧等日常活动的实现,都离不开它在背后的助力支撑。光网络的出现,让我们的生活变得更加舒适便捷。