您当前的位置:首页 > 电子 > 电子电路

单片机复位电路仿真分析

时间:03-27来源:作者:点击数:

I 单片机复位概述

1.1 复位机理

引脚RST保持2个机器周期以上的高电平

1.2 电路原理

电容刚接入电路时相当于短路,电容处于充电状态;当电容两极板充满电量后,电容相当于断路状态。根据电容充电时间效应,通过改变电容值及接入电阻值的大小,从而满足一定时长的高电平输出。

1.3 复位方式

图1复位电路图

1.3.1上电复位

上电瞬间,电容充电电流最大,电容相当于短路,RST端为高电平,自动复位;电容两端的电压达到电源电压时,电容充电电流为零,电容相当于开路,RST端为低电平,程序正常运行。

1.3.2手动复位

首先经过上电复位,当按下按键时,RST直接与VCC相连,为高电平形成复位,同时电解电容被短路放电;按键松开时,VCC对电容充电,充电电流在电阻上,RST依然为高电平,仍然是复位,充电完成后,电容相当于开路,RST为低电平,正常工作。

II 系统分析

2.1 模型简化

如图2,模型可简化为图示电路,其中,系统参数为C1和R2,系统控制输出量为,以电源接入为初始状态,即,对模型进行建模分析。

设定单片机的晶振为12MHZ,则两个机器周期为2ms。

图2简化系统模型

2.2 模型假设

假设电路中的电阻阻值忽略不计;

假设电平变化为理想电平模式,即>1.5V为高电平,输出为1;<1.5V为低电平,输出为0。

2.3 微分方程

III 系统求解

3.1 微分方程求解

3.1.1近似解

clear,clc
t0=0;
tN=0.5;%单位为s
h=0.001;
t=t0:h:tN;
N=length(t);
j=1;
y0=5;
for j=1:N
    tn=t0+h;
    k1=rk4(t0,y0);
    k2=rk4(t0+h/2,y0+h*k1/2);
    k3=rk4(t0+h/2,y0+h*k2/2);
    k4=rk4(t0+h,y0+h*k3);
    yn=y0+(h/6)*(k1+2*k2+2*k3+k4);
    yy(j)=yn;
    if yy(j)>=1.5
        y(j)=1;
    else
        y(j)=0;
    end
    t0=tn;
    y0=yn;
    j=j+1;
end
t=0:h:tN;
figure(1)
plot(t,yy,'r')
title('figure of RK_4 method')
xlabel('Time (s)')
ylabel('Value (y)')

图3 近似解曲线图

figure(2)
plot(t,y,'b')
title('figure of Urst')
xlabel('Time (t)')
ylabel('Value (U)')
axis([0 0.5 -0.1 1.1])

图4 电平模拟图

3.1.2解析解

4由方程

图6 电平与时间关系图

由图6可知,当t<0.12s时,输出为电平1,当t<0.12s时,输出为电平0.高电平持续时长大于2个机器周期。

(2)关于CR参数选取:

CR的取值与时长有直接关系,CR的取值有两种方式,其一,采用经验法,即模仿已有电路取相近值,再通过取增量进行仿真微调;其二,采用函数法,即根据上述方程,计算CR与时长的关系,从而根据t精准调节CR乘积值。

3.2.2软件仿真

利用Multisim对该电路进行仿真,如下图:

图7 电路仿真原理图

设定相应的值,可以通过观察示波器显示电平的变化。由图8可知,当电平从5V下降到1.5V时,用时0.12s。

图8 示波器仿真图象

四、结论

由上述分析可知,当采用RC电路复位时,复位引脚电平与时间的关系式为:,经过仿真,可以发现,调整不同的CR值,可以得到不同的高电平持续时间。如果单片机晶振为12MHZ,那么复位电路的CR值可根据关系式进行调节。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门