1.头文件
2.源文件
1.CRation.h
#pragma once
class CRation {
int n;//分子
int d;//分母
int Gcd();//求最大公约数
public:
CRation(int n, int d); //构造
CRation *Add(CRation &r); // 加法
CRation *Multiple(CRation &r); //乘法
CRation *Subtract(CRation &r); //减法
int GetN();
int GetD(); // 输出
};
2.CRation.cpp
#include<math.h>
#include"CRation.h"
CRation::CRation(int n0, int d0)
{
n = n0;
d = d0;
int x = Gcd();
n = n / x;
d = d / x;
}
int CRation::Gcd() {//辗转相除法
int x = abs(n), y = abs(d), t;
if (x > y) {
t = x, x = y, y = t;//交换x和y
}
while(y%x!=0){
t = y % x;
y = x;
x = t;
}
return x;
}
int CRation::GetN() {
return n;
}
int CRation::GetD() {
return d;
}
CRation *CRation::Add(CRation &r) {
int d1 = d * r.d; //分母乘积
int n1 = n * r.d + r.n*d;//分子相加
CRation *q = new CRation(n1, d1);//未约分的分数
return q;
}
CRation *CRation::Multiple(CRation &r) {
int d2 = d * r.d;
int n2 = n * r.n;
CRation *q = new CRation(n2, d2);
return q;
}
CRation *CRation::Subtract(CRation &r) {
int d1 = d * r.d; //分母乘积
int n1 = n * r.d - r.n*d;//分子相加
CRation *q = new CRation(n1, d1);//未约分的分数
return q;
}
3.main.cpp
#include<iostream>
#include"CRation.h"
using namespace std;
int main() {
CRation r1(5, 8);
CRation r2(18, 27);
//加法
CRation *p1 = r1.Add(r2);
cout << p1->GetN() << "/" << p1->GetD() << endl;
//乘法
CRation *p2 = r1.Multiple(r2);
cout << p2->GetN() << "/" << p2->GetD() << endl;
//减法
CRation *p3 = r1.Subtract(r2);
cout << p3->GetN() << "/" << p3->GetD() << endl;
//计算7/19 * 4/5 - 3/8
CRation r3(7, 19);
CRation r4(4, 5);
CRation r5(3, 8);
CRation *p4 = r3.Multiple(r4);
CRation *p5 = (*p4).Subtract(r5);
cout <<"7/19 * 4/5 - 3/8 = "<< p5->GetN() << "/" << p5->GetD() << endl;
getchar();
return 0;
}
1.函数Gcd()是辗转相除法求最大公约数
2.注意CRation里加减乘的返回值是CRation指针
3.注意自己写的头文件用双引号""括起来而不是<>