首先MySQL是典型的C/S架构,即Client/Server 架构,服务器端程序使用的mysqld。
不论客户端进程和服务器端进程是采用那种方式通信,最后实现效果是:客户端进程向服务器端进程发送一段文本(SQL语句),服务器端进程处理后再向客户端进程发送一段文本(处理结果)。
那服务器进程对客户端进程发送的请求做了什么处理,才能产生最后的处理结果呢?这里以查询请求为例展示:
下面具体展开看一下:
Connectors,指的是不同语言中与SQL的交互。MySQL首先是一个网络程序,在TCP之上定义了自己的应用协议,所以要使用MySQL,我们可以编写代码,跟MySQL Server建立TCP连接,之后按照其定义好的协议进行交互,或者比较方便的方法是调用SDK,比如Native C API ,JDBC,PHP等各种语言MySQL Connector,或者通过ODBC,但通过SDK 来访问MySQL,本质上还是在TCP来连接上通过MySQL协议跟MySQL进行交互。
MySQL Server 结构上可以分为如下三层:
一个系统(客户端)和MySQL服务器只能建立一个TCP链接吗?最多只有一个系统(客户端)与MySQL服务器建立连接吗?
答案:不是,多个系统都可以同时与MySQL服务器建立连接,而且每个系统与MySQL建立多个TCP连接。为了解决TCP无限创建,导致资源耗尽,从而性能下降问题,MySQL服务器端有专门的TCP连接池限制连接数,采用了长连接模式复用TCP连接。(长连接是发送完一次tcp请求之后,连接不断开,可以继续发送。)
第二层架构主要完成大多数核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析优化部分内置函数的执行,所以跨存储引擎的功能也在这个一层实现,如过程,函数等。
在该层,服务器会解析查询并创建解析树,并对其完成相应的优化:如确定查询表的顺序,是否利用索引等,最后生成相应的执行操作。
如果是SELECT语句,服务器还会查询内部的缓存,如果缓存空间足够大,这样在解决大量读操作的环境中能够发挥好的提升系统的作用。
SELECT id,name FROM student WHERE gender = '女';
这个SELECT查询先根据WHERE语句进行 选取 ,而不是将表全部查询出来以后再进行gender过滤。 这SELECT查询先根据id和name进行属性 投影 ,而不是将属性全部取出以后再进行过滤,将这两个查询条件 连接 起来生成最终查询结果。MySQL架构图本节开篇所示。下面为了熟悉SQL执行流程方便,我们可以简化如下
简化为三层结构:
分析器先做“词法分析 ”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。 MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。
接着,要做**“ 语法分析 ”**。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输入的这个 SQL 语句是否 满足 MySQL 语法 。
如果SQL语句正确,则会生成一个这样的语法树:
下面是SQL词法分析的过程步骤:
select * from test1 join test2 using(ID)
where test1.name='zhangwei' and test2.name='mysql高级课程';
方案1:可以先从表 test1 里面取出 name='zhangwei’的记录的 ID 值,再根据 ID 值关联到表 test2,再判断 test2 里面 name的值是否等于 ‘mysql高级课程’。
调用 InnoDB 引擎接口取这个表的第一行,判断 ID 值是不是1,如果不是则跳过,如果是则将这行存在结果集中;
调用引擎接口取“下一行”,重复相同的判断逻辑,直到取到这个表的最后一行。
执行器将上述遍历过程中所有满足条件的行组成的记录集作为结果集返回给客户端。
至此,这个语句就执行完成了。对于有索引的表,执行的逻辑也差不多。前面的结构图很复杂,我们需要抓取最核心的部分:SQL的执行原理。不同的DBMS的SQL的执行原理是相通
的,只是在不同的软件中,各有各的实现路径。
既然一条SQL语句会经历不同的模块,我们就来看下,在不同的模块中,SQL执行所使用的资源(时间)是怎样的。如何在MySQL中对一条SQL语句的执行时间进行分析。
上述操作在MySQL5.7中测试,发现前后两次相同的sql语句,执行的查询过程仍然是相同的。不是会使用缓存吗?这里我们需要 显式开启查询缓存模式 。在MySQL5.7中如下设置:
1.配置文件中开启查询缓存
在 /etc/my.cnf 中新增一行:
query_cache_type=1
2. 重启mysql服务
systemctl restart mysqld
3. 开启查询执行计划
由于重启过服务,需要重新执行如下指令,开启profiling。
mysql> set profiling=1;
4. 执行语句两次:
5. 查看profiles
6. 查看profile
显示执行计划,查看程序的执行步骤:
mysql> show profile for query 1;
mysql> show profile for query 2;
结论不言而喻。执行编号2时,比执行编号1时少了很多信息,从截图中可以看出查询语句直接从缓存中获取数据。
随着Mysql版本的更新换代,其优化器也在不断的升级,优化器会分析不同执行顺序产生的性能消耗不同而动态调整执行顺序。
需求:查询每个部门年龄高于20岁的人数且高于20岁人数不能少于2人,显示人数最多的第一名部门信息
下面是经常出现的查询顺序:
Oracle 中采用了 共享池 来判断 SQL 语句是否存在缓存和执行计划,通过这一步骤我们可以知道应该采用硬解析还是软解析。
我们先来看下 SQL 在 Oracle 中的执行过程:
从上面这张图中可以看出,SQL 语句在 Oracle 中经历了以下的几个步骤。
1.语法检查:检查 SQL 拼写是否正确,如果不正确,Oracle 会报语法错误。
2.语义检查:检查 SQL 中的访问对象是否存在。比如我们在写 SELECT 语句的时候,列名写错了,系统就会提示错误。语法检查和语义检查的作用是保证 SQL 语句没有错误。
3.权限检查:看用户是否具备访问该数据的权限。
4.共享池检查:共享池(Shared Pool)是一块内存池,最主要的作用是缓存 SQL 语句和该语句的执行计划。Oracle 通过检查共享池是否存在 SQL 语句的执行计划,来判断进行软解析,还是硬解析。那软解析和硬解析又该怎么理解呢?
在共享池中,Oracle 首先对 SQL 语句进行 Hash 运算 ,然后根据 Hash 值在库缓存(Library Cache)中查找,如果 存在 SQL 语句的执行计划 ,就直接拿来执行,直接进入“执行器”的环节,这就是 软解析 。
如果没有找到 SQL 语句和执行计划,Oracle 就需要创建解析树进行解析,生成执行计划,进入“优化器”这个步骤,这就是 硬解析 。
共享池是 Oracle 中的术语,包括了库缓存,数据字典缓冲区等。我们上面已经讲到了库缓存区,它主要缓存 SQL 语句和执行计划。而 数据字典缓冲区存储的是 Oracle 中的对象定义,比如表、视图、索引等对象。当对 SQL 语句进行解析的时候,如果需要相关的数据,会从数据字典缓冲区中提取。
库缓存这一个步骤,决定了 SQL 语句是否需要进行硬解析。为了提升 SQL 的执行效率,我们应该尽量避免硬解析,因为在 SQL 的执行过程中,创建解析树,生成执行计划是很消耗资源的。
你可能会问,如何避免硬解析,尽量使用软解析呢?在 Oracle 中, 绑定变量 是它的一大特色。绑定变量就是在 SQL 语句中使用变量,通过不同的变量取值来改变 SQL 的执行结果。这样做的好处是能 提升软解析的可能性 ,不足之处在于可能会导致生成的执行计划不够优化,因此是否需要绑定变量还需要视情况而定。
举个例子,我们可以使用下面的查询语句:
你也可以使用绑定变量,如:
SQL> select * from player where player_id = :player_id;
这两个查询语句的效率在 Oracle 中是完全不同的。如果你在查询 player_id = 10001 之后,还会查询10002、10003 之类的数据,那么每一次查询都会创建一个新的查询解析。而第二种方式使用了绑定变量,那么在第一次查询之后,在共享池中就会存在这类查询的执行计划,也就是软解析。
因此,我们可以通过使用绑定变量来减少硬解析,减少 Oracle 的解析工作量。但是这种方式也有缺点,使用动态 SQL 的方式,因为参数不同,会导致 SQL 的执行效率不同,同时 SQL 优化也会比较困难。
Oracle的架构图:
小结:
Oracle 和 MySQL 在进行 SQL 的查询上面有软件实现层面的差异。Oracle 提出了共享池的概念,通过共享池来判断是进行软解析,还是硬解析。
InnoDB存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS会申请 占用内存来作为数据缓冲池,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的 Buffer Pool 之后才可以访问。
这样做的好处是可以让磁盘活动最小化,从而减少与磁盘直接进行 I/O 的时间。要知道,这种策略对提升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。
缓冲池和查询缓存是一个东西吗?不是。
1. 缓冲池(Buffer Pool)
首先我们需要了解在 InnoDB 存储引擎中,缓冲池都包括了哪些。
在 InnoDB 存储引擎中有一部分数据会放到内存中,缓冲池则占了这部分内存的大部分,它用来存储各种数据的缓存,如下图所示:
从图中,你能看到 InnoDB 缓冲池包括了数据页、索引页、插入缓冲、锁信息、自适应 Hash 和数据字典信息等
缓存池的重要性:
缓存原则:
“ 位置 * 频次 ”这个原则,可以帮我们对 I/O 访问效率进行优化。
首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。
其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有 200G,但是内存只有 16G,缓冲池大小只有 1G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会 优先对使用频次高的热数据进行加载 。
缓冲池的预读特性:
了解了缓冲池的作用之后,我们还需要了解缓冲池的另一个特性:预读。
缓冲池的作用就是提升/0效率,而我们进行读取数据的时候存在一个“局部性原理”,也就是说我们使用了一些数据,大概率还会使用它用用的一些数据,因此采用预读的机制提前加载,可以减少未来可能的磁盘I/0操作。
2. 查询缓存
那么什么是查询缓存呢?
查询缓存是提前把 查询结果缓存 起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表发生变化,查询缓存就会失效,因此命中率低。
缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。
缓存在数据库中的结构和作用如下图所示:
如果我们执行 SQL 语句的时候更新了缓存池中的数据,那么这些数据会马上同步到磁盘上吗?
实际上,当我们对数据库中的记录进行修改的时候,首先会修改缓冲池中页里面的记录信息,然后数据库会以一定的频率刷新到磁盘上。注意并不是每次发生更新操作,都会立进行磁盘回写。缓冲池会采用一种叫做checkpoint的机制将数据回写到磁盘上,这样做的好处就是提升了数据库的整体性能,比如,当缓冲池不够时,需要释放掉一些不常用的页,此时就可以强行采用checkpoint的方式,将不常用的脏页回写到磁盘上,然后再从缓冲池中将这些页释放掉。这里脏页(dirtypage)指的是缓冲池中被修改过的页,与磁盘上的数据页不一致。
如果你使用的是 InnoDB 存储引擎,可以通过查看 innodb_buffer_pool_size 变量来查看缓冲池的大小。命令如下:
你能看到此时 InnoDB 的缓冲池大小只有 134217728/1024/1024=128MB。我们可以修改缓冲池大小,比如改为256MB,方法如下:
set global innodb_buffer_pool_size = 268435456;
Buffer Pool本质是InnoDB向操作系统申请的一块连续的内存空间,在多线程环境下,访问Buffer Pool中的数据都需要加锁处理。在Buffer Pool特别大而目多线程并发访问特别高的情况下,单一的Buffer Poo可能会影响请求的处理速度。所以在Buffer Pool特别大的时候,我们可以把它们拆分成若十个小的Buffer Pool,每个Buffer Pool都称为一个实例,它们都是独立的,独立的去申请内存空间,独立的管理各种链表。所以在多线程并发访问时并不会相互影响,从而提高并发处理能力。
我们可以在服务器启动的时候通过设置innodb_buffer_pool_instances的值来修改Buffer Pool实例的个数,比方说这样:
这样就表明我们要创建2个 Buffer Pool 实例。
我们看下如何查看缓冲池的个数,使用命令:
那每个 Buffer Pool 实例实际占多少内存空间呢?其实使用这个公式算出来的:
innodb_buffer_pool_size/innodb_buffer_pool_instances
也就是总共的大小除以实例的个数,结果就是每个 Buffer Pool 实例占用的大小。
不过也不是说Buffer Pool实例创建的越多越好,分别管理各个Buffer Pool也是需要性能开销的,InnoDB规定:当innodb_buffer_pool_size的值小于1G的时候设置多个实例是无效的,InnoDB会默认牠innodb_buffer_pool_instances的值修改为1。而我们鼓励在Buffer Pool大于或等于lG的时候设置多个Buffer Pool3实例。
Buffer Pool是MySQL内存结构中十分核心的一个组成,你可以先把它想象成一个黑盒子。
黑盒下的更新数据流程
当我们查询数据的时候,会先去Buffer Pool中查询。如果Buffer Poolr中不存在,存储引擎会先将数据从磁盘加载到
Buffer Pool中,然后将数据返回给客户端:同理,当我们更新某个数据的时候,如果这个数据不存在于Buffer Pool,同样会先数据加载进来,然后修改修改内存的数据。被修改过的数据会在之后统一刷入磁盘。
这个过程看似没啥问题,实则是有问题的。假设我们修改Buffer Pool中的数据成功,但是还没来得及将数据刷入磁盘MySQL就挂了怎么办?按照上图的逻辑,此时更新之后的数据只存在于Buffer Pool中,如果此时MySQL宕机了,这部分数据将会永久地丢失:
我更新到一半突然发生错误了,想要回滚到更新之前的版本,该怎么办?连数据持久化的保证、事务回滚都做不到还谈什么崩溃恢复?
答案:Redo Log & Undo Log