索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教课书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章。MySQL中也是一样的道理,进行数据查找时,首先查看查询条件是否命中某条索引,符合则通过索引查找相关数据,如果不符合则需要**全表扫描,**即需要一条一条地查找记录,直到找到与条件符合的记录。
如上图所示,数据库没有索引的情况下,数据分布在硬盘不同的位置上面,读取数据时,摆臂需要前后摆动查找数据,这样操作非常消耗时间。如果数据顺序摆放,那么也需要从1到6行按顺序读取,这样就相当于进行了6次IO操作,依旧非常耗时。如果我们不借助任何索引结构帮助我们快速定位数据的话,我们查找Col2=89这条记录,就要逐行去查找、去比较。从Co!2=34开始,进行比较,发现不是,继续下一行。我们当前的表只有不到10行数据,但如果表很大的话,有上千万条数据,就意味若要做很多很多次磁盘I/0才能找到。现在要查找C2=89这条记录。CPU必须先去磁盘查找这条记录,找到之后加载到内存,再对数据进行处理。这个过程最耗时间的就是磁盘1/0(涉及到磁盘的旋转时间(速度较快)、磁头的寻道时间(速度慢、费时))
假如给数据使用二叉树这样的数据结构进行存储,如下图所示
对字段Col2添加了索引,就相当于在硬盘上为Cl2维护了一个索的数据结构,即这个二叉搜索树。二叉搜树的每个结点存储的是(K,V)结构,key是Col2,value是该key所在行的文件指针(地址)。比如:该二叉搜索树的根节点就是:(34,Bx07)。现在对Col2添加了索引,这时再去查找Col2=89这条记录的时候会先去首找该二叉搜索树(二叉树的遍历查找)。读34到内存,89>34;继续右则数据,读89到内存,89=89;找到数据返回。找到之后就根据当前结点的valu快速定位到要查找的记录对应的地址。我们可以发现,只需要查找两次就可以定位到记录的地址,查询速度就提高了。
这就是我们为什么要建索号引,目的就是为了减少磁盘工/0的次数,加快查询速率。
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。
索引的本质:索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。这些数据结构以某种方式指向数据, 这样就可以在这些数据结构的基础上实现高级查找算法。
索引是在存储引擎中实现的,因此每种存储引擎的索引不一定完全相同,并且每种存储引擎不一定支持所有索引类型。同时,存储引摩可以定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。有些存储擎支持更多的索引数和更大的索引长度。
增加索引也有许多不利的方面,主要表现在如下几个方面:
因此,选择使用索引时,需要综合考虑索引的优点和缺点。
提示:
索引可以提高查询的速度,但是会影响插入记录的速度。这种情况下,最好的办法是先册除表中的索引,然后插入数据,插入完成后再创建索引。
先来看一个精确匹配的例子:
SELECT [列名列表] FROM 表名 WHERE 列名 = xxx;
假设目前表中的记录比较少,所有的记录都可以被存放到一个页中,在查找记录的时候可以根据搜索条件的不同
分为两种情况:
大部分情况下我们表中存放的记录都是非常多的,需要好多的数据页来存储这些记录。在很多页中查找记录可以分为两个步骤:
在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于我们并不能快速的定位到记录所在的页,所以只能从第一个页沿着双向链表一直往下找,在每一个页中根据我们上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时的。如果一个表有一亿条记录呢?此时索引应运而生。
建一个表:
mysql> CREATE TABLE index_demo(
-> c1 INT,
-> c2 INT,
-> c3 CHAR(1),
-> PRIMARY KEY(c1)
-> ) ROW_FORMAT = Compact;
这个新建的index_demo表中有2个INT类型的列,1个CHAR(1)类型的列,而且我们规定了c1列为主键,这个表使用Compact行格式来实际存储记录的。这里我们简化了index_demo表的行格式示意图:
我们只在示意图里展示记录的这几个部分:
将记录格式示意图的其他信息项暂时去掉并把它竖起来的效果就是这样:
把一些记录放到页里的示意图就是:
我们在根据某个搜索条件查找一些记录时为什么要遍历所有的数据页呢?因为各个页中的记录并没有规律,我们并不知道我们的搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。所以如果我们 想快速的定位到需要查找的记录在哪些数据页 中该咋办?我们可以为快速定位记录所在的数据页而 建立一个目录 ,建这个目录必须完成下边这些事:
① 迭代1次:目录项纪录的页
上边称为一个简易的索引方案,是因为我们为了在根据主键值进行查找时使用二分法快速定位具体的目录项而假设所有目录项都可以在物理存储器上连续存储,但是这样做有几个问题:
所以,我们需要一种可以灵活管理所有目录项的方式。我们发现目录项其实长得跟我们的用户记录差不多,只不过目录项中的两个列是主键和页号而已,为了和用户记录做一下区分,我们把这些用来表示目录项的记录称为目录项记录。InnoDB怎么区分一条记录是普通的用户记录还是目录项记录呢?使用记录头信息里的record type居性,它的各个取值代表的意思如下:
我们把前边使用到的目录项放到数据页中的样子就是这样:
从图中可以看出来,我们新分配了一个编号为30的页来专门存储目录项记录。这里再次强调 目录项记录和普通的 用户记录 的不同点:
**相同点:**两者用的是一样的数据页,都会为主键值生成 Page Directory (页目录),从而在按照主键值进行查找时可以使用 二分法 来加快查询速度。
现在以查找主键为 20 的记录为例,根据某个主键值去查找记录的步骤就可以大致拆分成下边两步:
② 迭代2次:多个目录项纪录的页
虽然说目录项记录中只存储主键值和对应的页号,比用户记录需要的存储空间小多了,但是不论怎么说一个页只有16KB大小,能存放的日录项记录也是有限的,那如果表中的数据太多,以至于一个数据页不足以存放所有的日录项记录,如何处理呢?
这里我们假设一个存储目录项记录的页最多只能存放4条月录项记录,所以如果此时我们再向上图中插入一条主键值为326的用户记录的话,那就需要分配一个新的存储目录项记录的页:
从图中可以看出,我们插入了一条主键值为320的用户记录之后需要两个新的数据页:
现在因为存储目录项记录的页不止一个,所以如果我们想根据主键值查找一条用户记录大致需要3个步骤,以查找主键值为 20 的记录为例:
③ 迭代3次:目录项记录页的目录页
问题来了,在这个查询步骤的第1步中我们需要定位存储目录项记录的页,但是这些页是不连续的,如果我们表中的数据非常多则会产生很多存储日录项记录的页,那我们怎么根据主键值快速定位一个存储目录项记录的页呢?那就为这些存储目录项记录的页再生成一个史高级的日录,就像是一个多级目录一样,大日录里嵌套小日录,小目录里才是实际的数据,所以现在各个页的示意图就是这样子:
如图,我们生成了一个存储更高级目录项的 页33 ,这个页中的两条记录分别代表页30和页32,如果用户记录的主键值在 [1, 320) 之间,则到页30中查找更详细的目录项记录,如果主键值 不小于320 的话,就到页32中查找更详细的目录项记录。
随若表中记录的增加,这个目录的层级会继续增加,如果简化一下,那么我们可以用下边这个图来描述它:
这个数据结构,它的名称是B+树。
④ B+Tree
不论是存放用户记录的数据页,还是存放目录项记录的数据页,我们都把它们存放到B+树这个数据结构中了,所以我们也称这些数据页为节点。从图中可以看出,我们的实际用户记录其实都存放在B+树的最底层的节点上,这些节点也被称为叶子节点,其余用来存放目录项的节点称为非叶子节点或者内节点,其中B+树最上边的那个节点也称为根节点。
一个B+树的节点其实可以分成好多层,规定最下边的那层,也就是存放我们用户记录的那层为第 0 层,之后依次往上加。之前我们做了一个非常极端的假设:存放用户记录的页最多存放3条记录,存放目录项记录的页最多存放4条记录。其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录的叶子节点代表的数据页可以存放 100条用户记录 ,所有存放目录项记录的内节点代表的数据页可以存放 1000条目录项记录 ,那么:
你的表里能存放 100000000000 条记录吗?所以一般情况下,我们 用到的B+树都不会超过4层 ,那我们通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的 Page Directory (页目录),所以在页面内也可以通过 二分法 实现快速定位记录。
索引按照物理实现方式,索引可以分为 2 种:聚簇(聚集)和非聚簇(非聚集)索引。我们也把非聚集索引称为二级索引或者辅助索引。
聚簇索引并不是一种单独的索引类型,而是一种数据存储方式(所有的用户记录都存储在了叶子节点),也就是所谓的索引即数据,数据即索引。
术语"聚簇"表示数据行和相邻的键值聚簇的存储在一起。
特点:
我们把具有这两种特性的B+树称为聚簇索引,所有完整的用户记录都存放在这个聚簇索引的叶子节点处,这种聚簇索引并不需要我们在MySQL语句中显式的使用INDEX语句去创建,InnoDB存储引擎会自动的为我们创建聚簇索引。
优点:
缺点:
限制:
上边介绍的聚簇索引只能在搜索条件是主键值时才能发挥作用,因为B+树中的数据都是按照主键进行排序的。那如果我们想以别的列作为搜索条件该怎么办呢?肯定不能是从头到尾沿若链表依次遍历记录一遍。
答案:我们可以多建几棵B+树,不同的B+树中的数据采用不同的排序规则。比方说我们用c2列的大小作为数据页、页中记录的排序规则,再建一棵B+树,效果如下图所示
这个B+树与上边介绍的聚簇索引有几处不同:
所以如果我们现在想通过c2列的值查找某些记录的话就可以使用我们刚刚建好的这个B+树了。以查找c2列的值为4的记录为例,查找过程如下:
概念:回表我们根据这个以c2列大小排序的B+树只能确定我们要查找记录的主键值,所以如果我们想根据c2列的值查找到完整的用户记录的话,仍然需要到聚簇索引中再查一遍,这个过程称为回表。也就是根据c2列的值查询一条完整的用户记录需要使用到 2 棵B+树!
**问题:**为什么我们还需要一次回表操作呢?直接把完整的用户记录放到叶子节点不OK吗?
回答:
如果把完整的用户记录放到叶子节点是可以不用回表。但是太占地方了,相当于每建立一棵B+树都需要把所有的用户记录再都拷贝一遍,这就有点太浪费存储空间了。
因为这种按照非主键列建立的B+树需要一次回表操作才可以定位到完整的用户记录,所以这种B+树也被称为二级索引(关文名secondary1ndex),或者轴助索引。由于我们使用的是c2列的大小作为B+树的排序规则,所以我们也称这个B+树是为c2列建立的索引。
非聚簇索引的存在不影响数据在聚簇索引中的组织,所以一张表可以有多个非聚簇索引。
小结:聚簇索引与非聚簇索引的原理不同,在使用上也有一些区别:
我们也可以同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说我们想让B+树按照 c2和c3列 的大小进行排序,这个包含两层含义:
为c2和c3列建立的索引的示意图如下:
如图所示,我们需要注意以下几点:
注意一点,以c2和c3列的大小为排序规则建立的B+树称为 联合索引 ,本质上也是一个二级索引。它的意思与分别为c2和c3列分别建立索引的表述是不同的,不同点如下:
我们前边介绍B+树索的时候,为了大家理解上的方便,先把存储用户记录的叶子节点都画出来,然后接若画存储目录项记录的内节点,实际上B+树的形成过程是这样的:
这个过程特别注意的是:一个B+树索的根节点自诞生之日起,便不会再移动。这样只要我们对某个表建立一个索引,那么它的根节点的页号便会被记录到某个地方,然后凡是InnoDB存储引擎需要用到这个索引的时候,都会从那个固定的地方取出根节点的页号,从而来访问这个索引。
我们知道B+树索引的内节点中目录项记录的内容是索引列+页号的搭配,但是这个搭配对于二级索引来说有点儿不严语。还拿index_-demo表为例,假设这个表中的数据是这样的:
如果二级索引中目录项记录的内容只是索引列+页号的格配的话,那么为c2列建立索引后的B+树应该长这样:
如果我们想新插入一行记录,其中c1、c2、c3的值分别是:9、1、‘c’,那么在修改这个为c2列建立的二级索对应的B+树时便碰到了个大问题:由于页3中存储的目录项记录是由c2列+页号的值构成的,页3中的两条目录项记录对应的c2列的值都是1,而我们新插入的这条记录的c2列的值也是1,那我们这条新插入的记录到底应该放到页4中,还是应该放到页5中啊?答案是:对不起,懵了,
为了让新插入记录能找到自己在那个页里,我们需要保证在B+树的同一层内节点的目录项记录除页号这个字段以外是唯一的。所以对于二级索引的内节点的目录项记录的内容实际上是由三个部分构成的:
也就是我们把主键传也添加到二级索引内节点中的目录项记录了,这样就能保证B+树悔一层节点中各条目录项记录除页号这个字段外是唯一的,所以我们为c2列建立二级索引后的示意图实际上应该是这样子的:
这样我们再插入记录(9,1,‘c’)时,由于页3中存储的目录项记录是由c2列+主健+页号的值构成的,可以先把新记录的c2列的值和页3中各目录项记录的c2列的值作比较,如果c2列的值相同的话,可以接若比较主键值,因为B+树同一层中不同目录项记录的c2列+主健的值肯定是不一样的,所以最后肯定能定位唯一的一条目录项记录,在本例中最后确定新记录应该被插入到页5中
一个B+树只需要很少的层级就可以轻松存储数亿条记录,查询速度相当不错!这是因为B+树本质上就是一个大的多层级目录,每经过一个目录时都会过掉许多无效的子目录,直到最后访问到存储真实数据的目录。如果一个大的目录中只存放一个子目录是个啥效果呢?那就是目录层级非常非常非常多,而且最后的那个存放真实数据的目录中只能存放一条记录。费了半天劲只能存放一条真实的用户记录?所以InnoDB的一个数据页至少可以存放两条记录。
B树索引适用存储引擎如表所示:
即使多个存储引擎支持同一种类型的索引,但是他们的实现原理也是不同的。Innodb和MyISAM默认的索引是Btree索引;而Memory默认的索引是Hash索引。
MyISAM引擎使用 B+Tree 作为索引结构,叶子节点的data域存放的是数据记录的地址。
下图是MISAM索引的原理图
我们知道InnoDB中索引即数据,也就是聚簇索引的那棵B+树的叶子节点中已经把所有完整的用户记录都包含了,而MyISAM的索引方案虽然也使用树形结构,但是却将索引和数拆分开存储:
这里设表一共有三列,假设我们以Col1为主键,上图是一个MylSAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主键索引和二级索引(Secondary key)在结构上没有任何区别,只是主键索引要求key是难一的,而二级索引的ky可以重复。如果我们在Col2上建立一个二级索引,则此索引的结构如下图所示:如果我们在Col2上建立一个二级索引,则此索引的结构如下图所示:
同样也是一棵B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为:首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。
MyISAM的索引方式都是“非聚簇”的,与InnoDB包含1个聚簇索引是不同的。小结两种引擎中索引的区别:
小结:
了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助。比如:
举例1:知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有二级索引都引用主键索引,过长的主键索引会令二级索引变得过大。
举例2:用非调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一棵B+Tree,非单调的主键会造成在插入新记录时,数据文件为了维持B+Tr爬e的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。
索引是个好东西,可不能乱建,它在空间和时间上都会有消耗:
一个表上索建的越多,就会占用越多的存储空间,在增改记录的时候性能就越差。为了能建立又好又少的索引,我们得学学这些索引在哪些条件下起作用的。
从MySQL的角度讲,不得不考虑一个现实问题就是磁盘IO。如果我们能让索的数据结构尽量减少硬盘的I/0操作,所消耗的时间也就越小。可以说,磁盘的I/0操作次数对索引的使用效率至关重要。
查找都是索引操作,一設来说索引非常大,尤其是关系型数据库,当数据量比较大的时候,索引的大小有可能几个G甚至更多,为了减少索引在内存的占用,数据库索引是存储在外部磁盘上的。当我们利用索引查询的时候,不可能把整个索引全部加载到内存,只能**逐一加载,**那么MySQL衡量查询效率的标准就是磁盘IO次数。
简单说就是依次遍历。
Hash本身是一个函数,又被称为散列函数,它可以帮助我们大幅提升检索数据的效率,
Hash算法是通过某种确定性的算法(比如MD5、SHA1、SHA2、SHA3)将输入转变为输出。相同的输入永远可以得到相同的输出,假设输入内容有微小偏差,在输出中通常会有不同的结果。
举例:如果你想要验证两个文件是否相同,那么你不需要把两份文件直接拿来比对,只需要让对方把Hash函数计算得到的结果告诉你即可,然后在本地同样对文件进行Hash函数的运算,最后通过比较这两个Hash函数的结果是否相同,就可以知道这两个文件是否相同。
加速查找速度的数据结构,常见的有两类
1)树,例如平衡二叉搜索树,查询插入/修改/则除的平均时间复杂度都是0(1og2N):
2)哈希,例如HashMap,查询/插入/修改/除的平均时间复杂度都是0(1):
采用Hash进行检索效率非常高,基本上一次检索就可以找到数据,而B+树需要自顶向下依次查找,多次访问节点才能找到数据,中间需要多次/O操作,从效率来说Hash比B+树更快。
在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[0.m-1]的槽位上。
上图中哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,如下图所示:
实验:体会数组和hash表的查找方面的效率区别:
// 算法复杂度为 O(n)
@Test
public void test1(){
int[] arr = new int[100000];
for(int i = 0;i < arr.length;i++){
arr[i] = i + 1;
}
long start = System.currentTimeMillis();
for(int j = 1; j<=100000;j++){
int temp = j;
for(int i = 0;i < arr.length;i++){
if(temp == arr[i]){
break;
}
}
}
long end = System.currentTimeMillis();
System.out.println("time: " + (end - start)); //time: 823
}
//算法复杂度为 O(1)
@Test
public void test2(){
HashSet<Integer> set = new HashSet<>(100000);
for(int i = 0;i < 100000;i++){
set.add(i + 1);
}
long start = System.currentTimeMillis();
for(int j = 1; j<=100000;j++) {
int temp = j;
boolean contains = set.contains(temp);
}
long end = System.currentTimeMillis();
System.out.println("time: " + (end - start)); //time: 5
}
Hash结构效率高,那为什么索引结构要设计成树型呢?
Hash索引适用存储引擎如表所示:
Hash索引的适用性:
采用自适应 Hash 索引目的是方便根据 SQL 的查询条件加速定位到叶子节点,特别是当 B+ 树比较深的时候,通过自适应 Hash 索引可以明显提高数据的检索效率。
我们可以通过innodb_adaptive_hash_index变量来查看是否开启了自适应 Hash,比如:
mysql> show variables like '%adaptive_hash_index';
如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的。
为了解决上面二叉查找树退化成链表的问题,人们提出了平衡二叉搜案树(Balanced Binary Tree),又称为AVL树(有别于AWL算法),它在二叉搜索树的基础上增加了约束,具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树
这里说一下,常见的平衡二叉树有很多种,包括了平衡二叉搜索树、红黑树、数堆、伸展树树。平衡二叉搜索树是最早提出来的自平衡二叉搜索树,当我们提到平衡二叉树时一般指的就是平衡二叉搜索树。事实上,第一棵树就居于平衡二叉搜索树,搜索时间复杂度就是0(1og2n)。
数据查询的时间主要依赖于磁盘/0的次数,如果我们采用二叉树的形式,即使通过平衡二叉搜索树进行了改进,树的深度也是O(log2),当n比较大时,深度也是比较高的,比如下图的情况:
每访问一次节点就需要进行一次磁盘I/0操作,对于上面的树来说,我们需要进行5次1/0操作。虽然平衡二叉树的效率高,但是树的深度也同样高,这就意味若磁盘I/0操作次数多,会影响整体数据查询的效率。
针对同样的数据,如果我们把二叉树改成 M 叉树 (M>2)呢?当 M=3 时,同样的 31 个节点可以由下面的三叉树来进行存储:
你能看到此时树的高度降低了,当数据且大的时候,以及树的分叉数M大的时候,M叉树的高度会远小于二叉树的高度(M>2)。所以,我们需要把树从“瘦高"变“矮胖”。
B树的英文是Balance Tree,也就是多路平衡查找树。简写为B-Tree(注意横杠表这两个单词连起来的意思,不是减号)。它的高度远小于平衡二叉树的高度。
B 树的结构如下图所示:
B树作为多路平衡查找树,它的每一个节点最多可以包括M个子节点,M称为B树的阶`。每个磁盘块中包括了关键字和子节点的指针。如果一个磁盘块中包括了x个关键字,那么指针数就是x+1。对于一个100阶的B树来说,如果有3层的话最多可以存储约100万的索引数据。对于大品的索引数据来说,采用B树的结构是非常适合的,因为树的高度要远小于二叉树的高度。
一个 M 阶的 B 树(M>2)有以下的特性:
上面那张图所表示的 B 树就是一棵 3 阶的 B 树。我们可以看下磁盘块 2,里面的关键字为(8,12),它有 3 个孩子 (3,5),(9,10) 和 (13,15),你能看到 (3,5) 小于 8,(9,10) 在 8 和 12 之间,而 (13,15)大于 12,刚好符合刚才我们给出的特征。然后我们来看下如何用 B 树进行查找。假设我们想要 查找的关键字是 9 ,那么步骤可以分为以下几步:
你能看出来在 B 树的搜索过程中,我们比较的次数并不少,但如果把数据读取出来然后在内存中进行比较,这个时间就是可以忽略不计的。而读取磁盘块本身需要进行 I/O 操作,消耗的时间比在内存中进行比较所需要的时间要多,是数据查找用时的重要因素。B 树相比于平衡二叉树来说磁盘 I/O 操作要少,在数据查询中比平衡二叉树效率要高。所以 只要树的高度足够低,IO次数足够少,就可以提高查询性能 。
再举例1:
小结:
1,B树在插入和则除节点的时候如果导致树不平衡,就通过自动调整节点的位置来保持树的自平衡。
2.关健字集合分布在整棵树中,即叶子节点和非叶子节点都存放数据。搜索有可能在非叶子节点结束
3,其搜索性能等价于在关键字全集内做一次二分查找。
B+树也是一种多路搜索树,基于B树做出了改进,住流的DBMS都支持B+树的索引方式,比如MySQL。相比于B-Tree,B+Tree适合文件素引系统。
B 树和 B+ 树都可以作为索引的数据结构,在 MySQL 中采用的是 B+ 树。
但B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然。
思考题:为了减少IO,索引树会一次性加载吗?
思考题:B+树的存储能力如何?为何说一般查找行记录,最多只需1~3次磁盘IO
InnoDB存储引整中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或B1GINT(占用8个字节),指针类型也一設为4或8个字节,也就是说一个页(B+Tre中的一个节点)中大概存储16KB/8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为103。也就是说一个深度为3的B+Tree索引可以维护103*103*103=10亿条记录。(这里假定一个数据页也存储103条行记录数据了)
实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的度一般都在2~4层。MySQL的InnoDB存储引摩在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1-3次磁盘1/o操作,
思考题:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?
思考题:Hash 索引与 B+ 树索引的区别
我们之前讲到过B+树索引的结构,Hash索引结构和B+树的不同,因此在索引使用上也会有差别.
1、Hash索引不能进行范用查询,而B+树可以,这是因为Hash索引指向的数据是无序的,而B+树的叶子节点是个有序的链表
2、Hash索引不支持联合索引的最左侧原则(即联合索引的部分索引无法使用),而B+树可以。对于联合索引来说,Hash索引在计算Hash值的时候是将索引键合并后再一起计算Hash值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用。
3、Hash索引不支持ORDER BY排序,因为Hash索引指向的数据是无序的,因此无法起到排序优化的作用,而B+树索引数据是有序的,可以起到对该字段ORDER BY排序优化的作用。同理,我们也无法用Hash索进行模糊查询,而B+树使用like进行模糊查询的时候,like后面后模糊查询(比如%结尾)的话就可以起到优化作用
4,InnoDB不支持哈希索引
思考题:Hash 索引与 B+ 树索引是在建索引的时候手动指定的吗?
如果使用的是MySQL的话,我们需要了解MySQL的存储引擎都支持哪些索引结构,如下图所示。如果是其他的DBMS,可以参考相关的DBMS文档。
你能看到,针对InnoDB和MyI5AM存储引擎,都会默认采用B+树索引,无法使用Hash索引。InnoDB提供的自适应Hash是不需要手动指定的。如果是Memory/Heap和NDB存储引擎,是可以进行选择Hash索的。
R-Tree在MySQL很少使用,仅支持 geometry数据类型 ,支持该类型的存储引擎只有myisam、bdb、innodb、ndb、archive几种。举个R树在现实领域中能够解决的例子:查找20英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所有的餐厅获取其位置信息,然后计算是否满足要求。如果一个地区有100家餐厅的话,我们就要进行100次位置计算操作了,如果应用到谷歌、百度地图这种超大数据库中,这种方法便必定不可行了。R树就很好的 解决了这种高维空间搜索问题 。它把B树的思想很好的扩展到了多维空间,采用了B树分割空间的思想,并在添加、删除操作时采用合并、分解结点的方法,保证树的平衡性。因此,R树就是一棵用来 存储高维数据的平衡树 。相对于B-Tree,R-Tree
的优势在于范围查找。
使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索时,需要平衡索的利(提升查询效率)和弊(维护索引所需的代价)。在实际工作中,我们还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索不是万能的,但数据量人的时候不使丹案引是不可出象的,毕竟索引的本质,是帮助我们提升数据检索的效率。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。