SPSS的二阶最小平方分析是一种线性回归模型,不仅适用于自变量和因变量存在双向关系,也同样适用于自变量和因变量不存在双向关系,克服了普通线性回归模型的缺陷。为了教大家使用SPSS的二阶最小平方分析进行数据分析,这里通过20例患者技能和状况数据进行二阶最小平方分析。相信通过本教程的学习,你将能够运用SPSS软件的这个模型对各领域的数据进行分析。
一、 数据准备
为了让大家更好的理解二阶最小平方数据分析,这里采用搜集了20例患者的技能和状况数据,目的是研究技能和状况之间的影响关系。主要包括知识、行为、技能、状况四个变量,下面我们将使用这些变量对数据个案进行二阶最小平方分析。
二、二阶最小二平方分析
由于自变量和因变量之间存在的双向关系,导致不能直接使用线性回归模型,因此我们要引入第三类变量:工具变量。
点击SPSS顶部菜单栏“分析”-“回归”-“二阶最小二平方”,将技能变量加载到因变量选框,知识、行为加载到工具变量选框,再点击右侧选项按钮,勾选“预测”和“残差”选框。
可以看到在数据视图中,我们得到了二阶最小平方模型的预测值和残差值,总体来说,预测值和真实值相差不大,残差值较小,说明预测结果较准确。
三、结果分析
这里主要介绍方差分析和系数分析,方差分析如下图所示,可以看到显著性P值小于0.01,则说明两个对比组之间有显著的差异,表示有99%的把握可以得出结论。也就是说,数据分析具有较好的作用。
通过系数分析得到的回归系数为0.165,而这个进行了二阶最小平方回归的方法得出的系数才是真正的技能对状况的影响系数,这说明技能每提升1个单位,状况随之提高0.165。
四、小结
上面是利用SPSS二阶最小平方模型对20例患者的技能和状况数据进行分析,通过分析结果可以知道,技能每提高1个单位,身体状况也提高0.165。因此可以说明,技能和身体状况存在一定的线性关系。