spss层次聚类分析步骤,层次聚类分析可使用spss的系统聚类分析方法,本文会举例演示分析步骤。spss层次聚类分析结果解读,主要是通过冰柱图与树状图(谱系图)来确定聚类数目,并以此确认各样本的聚类归属。
一、spss层次聚类分析步骤
spss层次聚类分析是一种通过分析样本间的相似性与距离来组成树状图层次结构的分析方法,也称为为系统聚类,可通过spss的系统聚类分析功能获得层次聚类的分析结果。
接下来,通过一组店铺类型的层次聚类分析例子,具体演示spss层次聚类分析步骤。
如图2所示,依次单击spss的分析-分类-系统聚类选项。
1.确认分析变量
层次聚类(系统聚类)是通过聚类变量的分析来确定不同样本的相似性,其变量需要是数值型的变量,如果聚类变量中包含字符串变量,需通过重新编码的方式,为字符串上码,将其转换为数值型变量。
本例已将字符串变量“标准e”转变为数值型变量,可直接将其选入到“变量”列表框,其他数值型变量也一同选入“变量”。
同时可选入“个案标注依据”,以便在冰柱图、谱系图中查看个案的名称。
2.设置解的范围
由于层次聚类无明确的聚类结果,为了避免聚类的数据过多,可对“解的范围”进行设置,可根据研究预设的分类数目,以往的分析经验等确定解的范围。
本例将范围设置为2-6个聚类数。
3.设置分析图表
在图表设置中,选入谱系图(树状图)与冰柱图,其中冰柱图可设定图表方向,本例使用默认的“垂直”方向。
二、spss层次聚类分析结果解读
接下来,针对以上设置进行spss层次聚类分析结果解读。
首先看到,按照预先设置的“解的范围”,可观察到2-6个聚类数目下,不同店铺分别属于哪个聚类。比如店铺3,在2-4个聚类时,属于第一个聚类,而在5-6个聚类时,属于第三个聚类。
得到每个个案在不同聚类数目所属的类别后,接下来,需要进一步确认聚类的树木。层次聚类不能得出确定的聚类数目,需要分析者运用经验自行选择聚类数目。
比如,本例确认5个聚类的结果,如图8所示,可在冰柱图纵坐标的“5”处绘制横向参考线,以此可得到不同店铺分属的聚类。
而相似地,也可借助谱系图确定聚类数目,谱系图使用的是距离标度结果,通过绘制X轴参考线,可从参考线与横向树状图线条得到聚类结果,其聚类结果跟冰柱图一致。
三、spss层次聚类与k均值聚类区别
层次聚类与k均值聚类都是常用的聚类分析方法。与spss层次聚类的模糊性不同,k均值聚类具有确定性,可得出确定的聚类数目与聚类中心,因其在初始就会将样本分为k组,并设定k个聚类中心测量各个样本与聚类中心的距离,因此,可得出清晰的聚类结果。
spss层次聚类是借助冰柱图或谱系图进行数据的解读,往往需要加入分析者的分析经验,因此结果具有不确定性。
而k均值的聚类结果,比如图10所示的例子,能得到确定的聚类数量为4,并确定了4个聚类中心的数值,并以数值衡量聚类中心的距离。
四、小结
以上就是关于spss层次聚类分析步骤,spss层次聚类分析结果解读的相关内容。spss层次聚类,又称为系统聚类,通过分析各样本分析变量间的距离来得到聚类分析结果,其结果具有模糊性,可通过spss的冰柱图、树状图,以及自身经验、分析问题来确定聚类数目。