您当前的位置:首页 > 计算机 > 软件应用 > 采集运算

SPSS多元logistic回归分析的使用技巧

时间:02-01来源:作者:点击数:

回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。

接下来我们要介绍的就是回归分析中的多元回归分析方法,IBM SPSS Statistics为用户提供了成熟的多元logistic回归分析算法。

一、概述

1.数据

1
图1:数据样本

这是一份对不同人群早餐选择的调查数据,通过SPSS的多元回归分析,可以将人群特征变量对早餐类型进行分析,找到它们之间的关系。

2.功能位置

2
图2:功能位置

在“分析”菜单下,我们可以找到“回归”中的“多元logistic”分析,进入多元回归分析的窗口。

二、分析方法

1.因变量设置

3
图3:因变量设置

因变量就是跟随自变量变化的量,本例中指的是“首选的早餐”这一变量。

点击“参考类别”,设置因变量的参考类别,这是分析时的参考样,我们设置为所有类别都和最后一个类别对比,类别顺序选择升序。

2.因子和协变量

4
图4:因子和协变量

因子可以简单理解为自变量,我们这里将年龄分段、婚姻状况和生活方式作为因变量处理。

协变量是分析过程中需要控制的、对因变量有一定影响的控制变量,这里设置为性别。

3.分析模型

5
图5:分析模型

SPSS的多元回归分析有三类模型可选,主效应是指设置好的因子和协变量与因变量之间的关系分析;全因子模型既包括主效应,也包括因子和协变量之间的交互分析;定制步进式则可以有用户自己定义分析类型。

我们这里选择主效应进行分析即可。

4.统计设置

6
图6:统计设置

这个窗口内设置的是需要进行的统计数据分析,包括多类统计数据可选,我们勾选模型下的伪R方、单元格可能性、步骤摘要、分类表、模型拟合度信息和拟合度,参数下的估计(置信区间设置为95%)和似然比检验。

定义子群体选择“由因子和协变量定义的协变量模式”。

5.收敛条件

7
图7:收敛设置

在条件对话框中,进行收敛设置。

最大迭代数是数据进行回归分析时可进行迭代的次数,这个数值必须是大于或小于100的整数,最大步骤对分设置的是迭代时的等分数,系统默认是5。

对数似然收敛可设置收敛值,回归过程中对数似然比函数是大于设定值的;参数收敛的数值设置类似。

本例中该对话框保持默认即可。

6.选项设置

8
图8:选项设置

在选项对话框中设置离散度量为“无”。

数据的进入概率为0.05,出去概率为0.1,这两个参数中,前者越大,进入模型的数据越多;后者越小,数据被剔除的越多,进入和出去方法均选择似然性。

其余保持默认即可。

7.保存设置

9
图9:保存设置

在这个对话框中设置需要保存的变量,如果需要将模型信息输出到XML文件,也可以在次设置。

8.完成分析

10
图10:结果输出

完成上述设置后,就可以在日志输出窗口中查看分析结果啦!分析结果包含多个表格,每个数值都有特定含义,大家在分析的时候也要认真观察数据哦!

三、小结

多元logistic回归分析实质上是二元logistic回归分析的加和,在操作方法和结果分析上都有一定的相似之处,如果大家认为多元回归分析理解起来有困难,可以先学习一下IBM SPSS Statistics二元回归分析的操作和分析。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门