您当前的位置:首页 > 计算机 > 软件应用 > 采集运算

用IBM SPSS Statistics进行时间序列分析预测

时间:02-01来源:作者:点击数:

在上节《解析SPSS软件中的日期类型变量转换》一文中,我们了解了如何在SPSS软件中,将原始数据中字符串类型的日期变量转换为SPSS的日期类型变量,学会如何转换以后,接下来我们要学习的就是如何应用到实际的统计工作中。

今天我们将使用此方法生成的日期类型变量,研究如何在SPSS中进行时间序列的分析预测。

一、绘制时序序列图

我们选用的数据如下图1所示,第一列表示时间,第二列表示对应时间的金额值,如果我们的时间变量不是日期类型的话,就需要将它转换为日期类型再进行时间序列的分析预测。

图1:数据展示
图1:数据展示

点击【分析】--【时间序列预测】--【序列图】,将金额放入变量中,时间放入时间轴标签中,然后点击确定,生成演示数据的时间序列系列图。

图2:序列图设置
图2:序列图设置

生成的序列图见下图3所示,我们可以看出金额变量随着时间的变化,越来越少,说明它们之间是具有一定的时序关系的,下面我们就可以建立时间序列模型进行相应的预测了。

图3:序列图展示
图3:序列图展示

二、创建时间序列模型

点击【分析】--【时间序列预测】--【创建传统模型】,然后在因变量中填入金额项,下方的方法选项中默认采用“专家建模器”,除了默认的选项外,还有指数平滑法和ARIMA法,这里我们使用专家建模器方法。

图4:变量设置
图4:变量设置

之后切换到“保存”选项卡中,设置好要保存的变量值和XML模型的保存路径,如下图5,完成配置后点击“确定”开始训练时间序列模型。

图5:保存设置
图5:保存设置

三、训练结果

完成模型的训练以后,SPSS的时间序列结果见下图6,我们可以看到模型的拟合度为0.763,属于较好的拟合范畴,在此图表中我们也可以看到接下来短时间的预测数据。

图6:时间序列结果
图6:时间序列结果

四、应用时间序列模型

模型训练成功后,我们之后要使用此时间序列模型来预测数据,就可以点击【分析】--【时间序列预测】--【应用传统模型】,然后在模型文件中选择我们模型的保存路径,再点击确定即可,具体界面见图7。

图7:应用时间序列模型
图7:应用时间序列模型

这样我们就使用IBM SPSS Statistic软件完成了一次完整的时间序列模型的分析、创建和应用,SPSS在时间序列模型上做了非常完善的支持,除了上述介绍的这些,SPSS还支持时间因果模型、季节性分解、谱分析等与时间相关的分析工具哦。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门