您当前的位置:首页 > 计算机 > 软件应用 > 采集运算

IBM SPSS Statistics有哪些方差齐性检验的方法

时间:02-01来源:作者:点击数:

SPSS方差齐性检验,即检验样本数据的方差是否相同的一种方法。什么情况下需要进行方差齐性检验?在经典的线性回归模型中,方差齐性是进行回归的前提要素之一,因OLS(最小二乘法)回归式要求模型中的随机误差项在解释变量时具有相同的方差。

本文将介绍SPSS的两种检验方差齐性的方法,分别是探索分析中的Levene(莱文)检验与单因素ANOVA分析中的方差齐性检验。

一、数据准备

本文使用的是一组包含销售额、客流量、销售量的店铺销售数据。

图1:销售数据
图1:销售数据

二、探索分析

首先看到的是探索分析中的Levene(莱文)检验。

如图2所示,依次单击分析-描述统计-探索选项。

图2:描述性探索分析
图2:描述性探索分析

接着,在探索设置中,将销售额设为因变量、店铺类型设为因子列表。

图3:变量设置
图3:变量设置

然后,单击探索设置中的“图”设置,在其“含莱文检验的分布-水平图”中选择“未转换”选项。

图4:图设置
图4:图设置

即可得到销售额的方差齐性检验结果。

莱文检验原假设Ho:各组方差相等,符合方差齐性,此时销售额均值的P值(0.842)>0.05,无法拒绝原假设,即数据符合方差齐性。

图5:方差齐性检验
图5:方差齐性检验

三、单因素ANOVA检验

除了使用探索分析外,也可以使用单因素ANOVA检验数据的方差齐性。

如图6所示,依次单击分析-比较均值-单因素ANOVA检验。

图6:单因素ANOVA检验
图6:单因素ANOVA检验

接着,与探索分析相同,将销售额设为因变量,但需要注意的是,ANOVA检验无法将名义变量设为因子,此处使用了所处区域(有序变量)作为因子。

图7:变量设置
图7:变量设置

完成变量设置后,单击选项,在弹出的选项窗口中勾选“方差齐性检验”。

图8:方差齐性检验
图8:方差齐性检验

即可得到如图9所示的方差齐性检验结果。

检验原假设Ho:各组方差相等,符合方差齐性,此时销售额均值的P值(0.290)>0.05,无法拒绝原假设,即数据符合方差齐性。

图9:检验结果
图9:检验结果

四、小结

综上所述,在构建线性回归方程前,我们可以运用IBM SPSS Statistics探索分析中的莱文检验、单因素ANOVA检验中的方差齐性检验来进行因变量的方差齐性检验,以满足线性回归方程关于OLD回归式,需满足随机误差项具有相同方差的假设。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门