现实中我们常常会遇到对两个分类变量之间是否存在关联进行讨论,如睡眠时间与学习成绩之间是否存在关联、宣传费用与销售量是否存在关联?
对于这种问题,我们是不能通过表面数据进行确定的。但我们可以通过IBM SPSS Statistics(win)中的交叉表功能来确定两个变量之间的关联是否存在。
一、录入数据
消费者的年龄与消费者的购买意愿是否存在关联?相信这是一个多数人都会感兴趣的问题。本文将以一组年龄与购买意愿的数据为例,展示运用IBM SPSS Statistics进行关联性分析的过程与步骤。
二、对数据进行加权
此时录入进IBM SPSS Statistics的数据是汇总的数据,还不具备使用交叉表分析的条件。在进行交叉表分析之前还需要运用个案加权的功能,对购买数量进行加权。
按照数据-个案加权的步骤进入个案加权对话框。
选择个案加权依据,将购买数量放入频率变量栏中,点击确定,即可为购买数量进行加权。
三、交叉表分析
加权完成后,便可进行交叉表分析,在IBM SPSS Statistics中按照分析-描述统计-交叉表的顺序打开交叉表对话框。
在交叉表对话框中,购买意愿、年龄层次与购买数量初始是在左边的待选框中,需要将购买意愿列入行变量框,将年龄层次列入列变量框,购买数量则不需要变动。
此时为了便于最终结果的检验,需要运用到卡方检测,因此可点击右侧的统计,在展开的交叉表:统计中选择卡方。
点击继续,回到交叉表后再点击确定,即可得到交叉表的分析结果。
根据卡方检验的结果可知,渐进显著性P为0.369。根据假设检验的规定,若P值大于显著性水平α(显著性水平是估计总体参数落在某一区间内,可能犯错误的概率),则两个变量不存在关联性;反之则存在关联性。假设显著性水平α=0.05,则P=0.369>α=0.05,所以可认为购买意愿与消费者的年龄无关。
现实中存在着很多变量都具有似是而非的关联性,我们可以通过IBM SPSS Statistics的交叉表对这些变量进行分析,挖掘出真正的关联,排除错误的关联,这是非常有意义的。如对教育者而言可通过这个方法找到影响学生学习的真正因素,对生产者而言可以找到影响销量的因素。欢迎访问城东书院网站查看学习更多SPSS教程。