您当前的位置:首页 > 计算机 > 软件应用 > 采集运算

如何在IBM SPSS Statistics中进行K均值聚类分析

时间:02-01来源:作者:点击数:

IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。

接下来,我们通过实例来演示一下K均值聚类分析。

一、数据准备

本例使用的是一组店铺的销售数据,包含客流量、销售额与销售量三个连续型变量。我们会使用到以上三个连续变量对数据个案进行K均值聚类分析。

图1:店铺数据
图1:店铺数据

二、K均值聚类参数设置

K均值聚类分析是SPSS分类分析法中的一种,由于其运算的快速性,也被称为“快速聚类”。

图2:K均值聚类
图2:K均值聚类

如图3所示,K均值聚类分析设置面板包含变量、聚类中心等设置参数。

图3:参数设置面板
图3:参数设置面板

按照数据分析目的,如图4所示,我们需将客流量、销售额、销售量添加为变量,然后再单击右侧的“保存”按钮,保存“聚类成员”与“与聚类中心的距离”两个新变量。

图4:变量与保存设置
图4:变量与保存设置

接着,打开“迭代”设置,设置最大迭代次数,一般按照默认即可,如果默认次数过小,应尽量调大。

图5:迭代次数
图5:迭代次数

最后,设置分析的选项,如图6所示,勾选“初始聚类中心”与“每个个案的聚类信息”,以了解初始聚类与最终聚类的个案数目;勾选“ANOVA表”,检验分析的置信水平。

图6:选项设置
图6:选项设置

三、结果解读

运行分析后,回到数据表,如图7所示,原数据表末端出现了两个新变量,分别是“聚类成员”与“与聚类中心的距离”。我们可以从中观察到每个个案所属的聚类,以及该个案与聚类中心的距离。

图7:生成新变量
图7:生成新变量

而从分析结果看到,SPSS初始设定了两个聚类。

图8:初始聚类中心
图8:初始聚类中心

而经过2次迭代运算后,最终聚类中心仍设定为两个不变。

图9:最终聚类中心
图9:最终聚类中心

而从ANOVA分析表看到,客流量、销售额、销售量的显著性都小于0.001,说明这三个变量都能很好地区分各个分类。

图10:ANOVA检验
图10:ANOVA检验

最后,从“每个聚类中的个案数目”可得到每一类别包含的个案数量。

图11:聚类中的个案数目
图11:聚类中的个案数目

四、小结

综上所述,K均值聚类分析,可利用欧式距离的测量,快速地将距离相似的个案归总为一个类别,但也要注意到的是,K均值聚类分析受异常值影响较大。

除K均值聚类,SPSS还提供了系统聚类、二阶聚类的分类方法,可前往城东书院网站获取更加系统的演示分享。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门