typeid 运算符用来获取一个表达式的类型信息。类型信息对于编程语言非常重要,它描述了数据的各种属性:
类型信息是创建数据的模板,数据占用多大内存、能进行什么样的操作、该如何操作等,这些都由它的类型信息决定。
typeid 的操作对象既可以是表达式,也可以是数据类型,下面是它的两种使用方法:
dataType 是数据类型,expression 是表达式,这和 sizeof 运算符非常类似,只不过 sizeof 有时候可以省略括号( ),而 typeid 必须带上括号。
typeid 会把获取到的类型信息保存到一个 type_info 类型的对象里面,并返回该对象的常引用;当需要具体的类型信息时,可以通过成员函数来提取。typeid 的使用非常灵活,请看下面的例子(只能在 VC/VS 下运行):
#include <iostream>
#include <typeinfo>
using namespace std;
class Base{ };
struct STU{ };
int main(){
//获取一个普通变量的类型信息
int n = 100;
const type_info &nInfo = typeid(n);
cout<<nInfo.name()<<" | "<<nInfo.raw_name()<<" | "<<nInfo.hash_code()<<endl;
//获取一个字面量的类型信息
const type_info &dInfo = typeid(25.65);
cout<<dInfo.name()<<" | "<<dInfo.raw_name()<<" | "<<dInfo.hash_code()<<endl;
//获取一个对象的类型信息
Base obj;
const type_info &objInfo = typeid(obj);
cout<<objInfo.name()<<" | "<<objInfo.raw_name()<<" | "<<objInfo.hash_code()<<endl;
//获取一个类的类型信息
const type_info &baseInfo = typeid(Base);
cout<<baseInfo.name()<<" | "<<baseInfo.raw_name()<<" | "<<baseInfo.hash_code()<<endl;
//获取一个结构体的类型信息
const type_info &stuInfo = typeid(struct STU);
cout<<stuInfo.name()<<" | "<<stuInfo.raw_name()<<" | "<<stuInfo.hash_code()<<endl;
//获取一个普通类型的类型信息
const type_info &charInfo = typeid(char);
cout<<charInfo.name()<<" | "<<charInfo.raw_name()<<" | "<<charInfo.hash_code()<<endl;
//获取一个表达式的类型信息
const type_info &expInfo = typeid(20 * 45 / 4.5);
cout<<expInfo.name()<<" | "<<expInfo.raw_name()<<" | "<<expInfo.hash_code()<<endl;
return 0;
}
运行结果:
从本例可以看出,typeid 的使用非常灵活,它的操作数可以是普通变量、对象、内置类型(int、float等)、自定义类型(结构体和类),还可以是一个表达式。
本例中还用到了 type_info 类的几个成员函数,下面是对它们的介绍:
遗憾的是,C++ 标准只对 type_info 类做了很有限的规定,不仅成员函数少,功能弱,而且各个平台的实现不一致。例如上面代码中的 name() 函数,nInfo.name()、objInfo.name()在 VC/VS 下的输出结果分别是int和class Base,而在 GCC 下的输出结果分别是i和4Base。
C++ 标准规定,type_info 类至少要有如下所示的 4 个 public 属性的成员函数,其他的扩展函数编译器开发者可以自由发挥,不做限制。
返回一个能表示类型名称的字符串。但是C++标准并没有规定这个字符串是什么形式的,例如对于上面的objInfo.name()语句,VC/VS 下返回“class Base”,但 GCC 下返回“4Base”。
判断一个类型是否位于另一个类型的前面,rhs 参数是一个 type_info 对象的引用。但是C++标准并没有规定类型的排列顺序,不同的编译器有不同的排列规则,程序员也可以自定义。要特别注意的是,这个排列顺序和继承顺序没有关系,基类并不一定位于派生类的前面。
重载运算符“==”,判断两个类型是否相同,rhs 参数是一个 type_info 对象的引用。
重载运算符“!=”,判断两个类型是否不同,rhs 参数是一个 type_info 对象的引用。
关于运算符重载,我们将在《C++运算符重载》一章中详细讲解。
raw_name() 是 VC/VS 独有的一个成员函数,hash_code() 在 VC/VS 和较新的 GCC 下有效。
可以发现,不像 Java、C# 等动态性较强的语言,C++ 能获取到的类型信息非常有限,也没有统一的标准,如同“鸡肋”一般,大部分情况下我们只是使用重载过的“==”运算符来判断两个类型是否相同。
typeid 运算符经常被用来判断两个类型是否相等。
例如有下面的定义:
char *str;
int a = 2;
int b = 10;
float f;
类型判断结果为:
类型比较 | 结果 | 类型比较 | 结果 |
---|---|---|---|
typeid(int) == typeid(int) | true | typeid(int) == typeid(char) | false |
typeid(char*) == typeid(char) | false | typeid(str) == typeid(char*) | true |
typeid(a) == typeid(int) | true | typeid(b) == typeid(int) | true |
typeid(a) == typeid(a) | true | typeid(a) == typeid(b) | true |
typeid(a) == typeid(f) | false | typeid(a/b) == typeid(int) | true |
typeid 返回 type_info 对象的引用,而表达式typeid(a) == typeid(b)的结果为 true,可以说明,一个类型不管使用了多少次,编译器都只为它创建一个对象,所有 typeid 都返回这个对象的引用。
需要提醒的是,为了减小编译后文件的体积,编译器不会为所有的类型创建 type_info 对象,只会为使用了 typeid 运算符的类型创建。不过有一种特殊情况,就是带虚函数的类(包括继承来的),不管有没有使用 typeid 运算符,编译器都会为带虚函数的类创建 type_info 对象,我们将在《C++ RTTI机制(运行时类型识别)》中展开讲解。
例如有下面的定义:
class Base{};
class Derived: public Base{};
Base obj1;
Base *p1;
Derived obj2;
Derived *p2 = new Derived;
p1 = p2;
类型判断结果为:
类型比较 | 结果 | 类型比较 | 结果 |
---|---|---|---|
typeid(obj1) == typeid(p1) | false | typeid(obj1) == typeid(*p1) | true |
typeid(&obj1) == typeid(p1) | true | typeid(obj1) == typeid(obj2) | false |
typeid(obj1) == typeid(Base) | true | typeid(*p1) == typeid(Base) | true |
typeid(p1) == typeid(Base*) | true | typeid(p1) == typeid(Derived*) | false |
表达式typeid(*p1) == typeid(Base)和typeid(p1) == typeid(Base*)的结果为 true 可以说明:即使将派生类指针 p2 赋值给基类指针 p1,p1 的类型仍然为 Base*。
最后我们再来看一下 type_info 类的声明,以进一步了解它所包含的成员函数以及这些函数的访问权限。type_info 类位于typeinfo头文件,声明形式类似于:
class type_info {
public:
virtual ~type_info();
int operator==(const type_info& rhs) const;
int operator!=(const type_info& rhs) const;
int before(const type_info& rhs) const;
const char* name() const;
const char* raw_name() const;
private:
void *_m_data;
char _m_d_name[1];
type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);
};
它的构造函数是 private 属性的,所以不能在代码中直接实例化,只能由编译器在内部实例化(借助友元)。而且还重载了“=”运算符,也是 private 属性的,所以也不能赋值。