在《线程同步机制》一节讲到,实现多线程同步的常用方法有 4 种,互斥锁是其中最简单也最有效地的方法。本节,我们就为您详细讲解互斥锁的具体用法。
互斥锁实现多线程同步的核心思想是:有线程访问进程空间中的公共资源时,该线程执行“加锁”操作(将资源“锁”起来),阻止其它线程访问。访问完成后,该线程负责完成“解锁”操作,将资源让给其它线程。当有多个线程想访问资源时,谁最先完成“加锁”操作,谁就最先访问资源。
当有多个线程想访问“加锁”状态下的公共资源时,它们只能等待资源“解锁”,所有线程会排成一个等待(阻塞)队列。资源解锁后,操作系统会唤醒等待队列中的所有线程,第一个访问资源的线程会率先将资源“锁”起来,其它线程则继续等待。
本质上,互斥锁就是一个全局变量,它只有 "lock" 和 "unlock" 两个值,含义分别是:
通过对资源进行 "加锁(lock)"和 "解锁(unlock)",可以确保同一时刻最多有 1 个线程访问该资源,从根本上避免了“多线程抢夺资源”的情况发生。
再次强调,对资源进行“加锁”和“解锁”操作的必须是同一个线程。换句话说,哪个线程对资源执行了“加锁”操作,那么“解锁”操作也必须由该线程负责。
POSIX 标准规定,用 pthread_mutex_t 类型的变量来表示一个互斥锁,该类型以结构体的形式定义在<pthread.h>头文件中。举个例子:
我们成功地定义了一个名为 myMutex 的互斥锁,但要想使用它,还要进行初始化操作。
初始化 pthread_mutex_t 变量的方式有两种,分别为:
以上两种初始化方式是完全等价的,PTHREAD_MUTEX_INITIALIZER 宏和 pthread_mutex_init() 函数都定义在 <pthread.h> 头文件中,它们的主要区别在于:
pthread_mutex_init() 函数专门用于初始化互斥锁,语法格式如下:
mutex 参数表示要初始化的互斥锁;attr 参数用于自定义新建互斥锁的属性,attr 的值为 NULL 时表示以默认属性创建互斥锁。
pthread_mutex_init() 函数成功完成初始化操作时,返回数字 0;如果初始化失败,函数返回非零数。
注意,不能对一个已经初始化过的互斥锁再进行初始化操作,否则会导致程序出现无法预料的错误。
对于互斥锁的“加锁”和“解锁”操作,常用的函数有以下 3 种:
参数 mutex 表示我们要操控的互斥锁。函数执行成功时返回数字 0,否则返回非零数。
pthread_mutex_unlock() 函数用于对指定互斥锁进行“解锁”操作,pthread_mutex_lock() 和 pthread_mutex_trylock() 函数都用于实现“加锁”操作,不同之处在于当互斥锁已经处于“加锁”状态时:
对于使用动态内存创建的互斥锁,例如:
手动释放 myMutex 占用的内存(调用 free() 函数)之前,必须先调用 pthread_mutex_destory() 函数销毁该对象。
pthread_mutex_destory() 函数用于销毁创建好的互斥锁,语法格式如下:
参数 mutex 表示要销毁的互斥锁。如果函数成功销毁指定的互斥锁,返回数字 0,反之返回非零数。
注意,对于用 PTHREAD_MUTEX_INITIALIZER 或者 pthread_mutex_init() 函数直接初始化的互斥锁,无需调用 pthread_mutex_destory() 函数手动销毁。
接下来,我们使用互斥锁对《线程同步机制》一节中模拟“4 个售票员卖 10 张票”的程序进行改良,如下所示:
#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>
#include<unistd.h>
int ticket_sum = 10;
//创建互斥锁
pthread_mutex_t myMutex = PTHREAD_MUTEX_INITIALIZER;
//模拟售票员卖票
void *sell_ticket(void *arg) {
//输出当前执行函数的线程 ID
printf("当前线程ID:%u\n", pthread_self());
int i;
int islock = 0;
for (i = 0; i < 10; i++)
{
//当前线程“加锁”
islock = pthread_mutex_lock(&myMutex);
//如果“加锁”成功,执行如下代码
if (islock == 0) {
//如果票数 >0 ,开始卖票
if (ticket_sum > 0)
{
sleep(1);
printf("%u 卖第 %d 张票\n", pthread_self(), 10 - ticket_sum + 1);
ticket_sum--;
}
//当前线程模拟完卖票过程,执行“解锁”操作
pthread_mutex_unlock(&myMutex);
}
}
return 0;
}
int main() {
int flag;
int i;
void *ans;
//创建 4 个线程,模拟 4 个售票员
pthread_t tids[4];
for (i = 0; i < 4; i++)
{
flag = pthread_create(&tids[i], NULL, &sell_ticket, NULL);
if (flag != 0) {
printf("线程创建失败!");
return 0;
}
}
sleep(10); //等待 4 个线程执行完成
for (i = 0; i < 4; i++)
{
//阻塞主线程,确认 4 个线程执行完成
flag = pthread_join(tids[i], &ans);
if (flag != 0) {
printf("tid=%d 等待失败!", tids[i]);
return 0;
}
}
return 0;
}
假设程序编写在 thread.c 文件中,执行过程为:
程序中共创建了 4 个线程,每个线程“开始卖票”前都会进行“加锁”操作(第 17 行),“卖票结束”后再执行“解锁”操作(第 28 行)。通过执行结果可以看到,互斥锁很好地解决了“线程间竞争资源”的问题,实现了线程同步。