前面我们已经讲过怎么构建中文领域的tokenization:
https://www.cdsy.xyz/computer/programme/artificial_intelligence/250320/cd73927.html
接下来我们将介绍继续预训练。
我们新增加了一些中文词汇到词表中,这些词汇是没有得到训练的,因此在进行指令微调之前我们要进行预训练。预训练的方式一般都是相同的,简单来说,就是根据上一个字预测下一个字是什么。为了方便起见,我们这里直接使用IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese模型,并且tokenizer也是其自带的。
同样的,我们使用的数据还是斗破苍穹小说数据。首先我们看看是怎么处理数据的, 数据位于data下,分别为corpus.txt和test_corpus.txt,每一行为一句或多句话。再看看数据预处理的部分,在test_dataset.py里面:
- import os
- import logging
- import datasets
- import transformers
-
- from pprint import pprint
- from itertools import chain
- from datasets import load_dataset, concatenate_datasets
- from transformers.testing_utils import CaptureLogger
- from transformers import AutoTokenizer, LlamaTokenizer
-
-
- tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
-
- logger = logging.getLogger(__name__)
-
- lm_datasets = []
- files = ["data/test_corpus.txt"]
- data_cache_dir = "./cache_data"
- preprocessing_num_workers = 1
-
- # tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-bert-wwm-ext")
- tokenizer = LlamaTokenizer.from_pretrained("ziqingyang/chinese-llama-lora-7b")
- tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese")
-
- def print_dict(adict):
- for k,v in adict.items():
- print(k, v)
-
- def tokenize_function(examples):
- with CaptureLogger(tok_logger) as cl:
- output = tokenizer(examples["text"])
- # clm input could be much much longer than block_size
- if "Token indices sequence length is longer than the" in cl.out:
- tok_logger.warning(
- "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
- " before being passed to the model."
- )
- return output
-
- block_size = 128
-
- # 将所有文本进行拼接
- def group_texts(examples):
- # Concatenate all texts.
- concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
- total_length = len(concatenated_examples[list(examples.keys())[0]])
- # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
- # customize this part to your needs.
- if total_length >= block_size:
- total_length = (total_length // block_size) * block_size
- # Split by chunks of max_len.
- result = {
- k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
- for k, t in concatenated_examples.items()
- }
- result["labels"] = result["input_ids"].copy()
- return result
-
- for idx, file in enumerate(files):
- data_file = file
- filename = ''.join(file.split(".")[:-1])
-
- cache_path = os.path.join(data_cache_dir, filename)
- os.makedirs(cache_path, exist_ok=True)
- try:
- processed_dataset = datasets.load_from_disk(cache_path, keep_in_memory=False)
- print(f'training datasets-{filename} has been loaded from disk')
- except Exception:
- cache_dir = os.path.join(data_cache_dir, filename + "_text")
- os.makedirs(cache_dir, exist_ok=True)
-
- raw_dataset = load_dataset("text", data_files=data_file, cache_dir=cache_dir, keep_in_memory=False)
- print_dict(raw_dataset["train"][0])
- # 直接进行tokenize,需要注意的是只需要在句子开头加上bos_token
- tokenized_dataset = raw_dataset.map(
- tokenize_function,
- batched=True,
- num_proc=preprocessing_num_workers,
- remove_columns="text",
- load_from_cache_file=True,
- keep_in_memory=False,
- cache_file_names={k: os.path.join(cache_dir, f'tokenized.arrow') for k in raw_dataset},
- desc="Running tokenizer on dataset",
- )
-
- print_dict(tokenized_dataset["train"][0])
-
- grouped_datasets = tokenized_dataset.map(
- group_texts,
- batched=True,
- num_proc=preprocessing_num_workers,
- load_from_cache_file=True,
- keep_in_memory=False,
- cache_file_names={k: os.path.join(cache_dir, f'grouped.arrow') for k in tokenized_dataset},
- desc=f"Grouping texts in chunks of {block_size}",
- )
- processed_dataset = grouped_datasets
-
- print_dict(processed_dataset["train"][0])
- processed_dataset.save_to_disk(cache_path)
- if idx == 0:
- lm_datasets = processed_dataset['train']
- else:
- assert lm_datasets.features.type == processed_dataset["train"].features.type
- lm_datasets = concatenate_datasets([lm_datasets, processed_dataset["train"]])
-
- lm_datasets = lm_datasets.train_test_split(test_size=0.1)
-
- print_dict(lm_datasets["train"][0])
-
-
结果:
- text 又一次上架了,这次比上次还激动,甚至激动到了上传了章节却不知道发出来的地步。
- input_ids [21134, 1348, 671, 3613, 677, 3373, 749, 8024, 6821, 3613, 3683, 677, 3613, 6820, 4080, 1220, 8024, 4493, 5635, 4080, 1220, 1168, 749, 677, 837, 749, 4995, 5688, 1316, 679, 4761, 6887, 1355, 1139, 3341, 4638, 1765, 3635, 511, 21133]
- token_type_ids [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- attention_mask [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- input_ids [21134, 1348, 671, 3613, 677, 3373, 749, 8024, 6821, 3613, 3683, 677, 3613, 6820, 4080, 1220, 8024, 4493, 5635, 4080, 1220, 1168, 749, 677, 837, 749, 4995, 5688, 1316, 679, 4761, 6887, 1355, 1139, 3341, 4638, 1765, 3635, 511, 21133, 21134, 2219, 2217, 8024, 1068, 754, 3173, 741, 8024, 677, 3373, 1184, 2768, 5327, 1962, 2533, 3300, 763, 1139, 725, 1759, 6486, 4638, 2692, 3160, 8024, 2190, 754, 6821, 819, 1331, 4798, 4638, 2768, 5327, 8024, 1759, 6486, 2552, 7027, 6820, 4696, 3300, 1126, 1146, 2684, 2607, 680, 2558, 2559, 8024, 6006, 6432, 3295, 5307, 3300, 782, 6432, 1759, 6486, 3221, 1170, 1139, 3341, 4638, 3144, 2945, 8024, 2190, 754, 6821, 763, 4522, 6241, 8024, 2769, 738, 2400, 3313, 1922, 6814, 1762, 2692, 8024, 1166, 4638, 2769, 679]
- token_type_ids [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- attention_mask [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- labels [21134, 1348, 671, 3613, 677, 3373, 749, 8024, 6821, 3613, 3683, 677, 3613, 6820, 4080, 1220, 8024, 4493, 5635, 4080, 1220, 1168, 749, 677, 837, 749, 4995, 5688, 1316, 679, 4761, 6887, 1355, 1139, 3341, 4638, 1765, 3635, 511, 21133, 21134, 2219, 2217, 8024, 1068, 754, 3173, 741, 8024, 677, 3373, 1184, 2768, 5327, 1962, 2533, 3300, 763, 1139, 725, 1759, 6486, 4638, 2692, 3160, 8024, 2190, 754, 6821, 819, 1331, 4798, 4638, 2768, 5327, 8024, 1759, 6486, 2552, 7027, 6820, 4696, 3300, 1126, 1146, 2684, 2607, 680, 2558, 2559, 8024, 6006, 6432, 3295, 5307, 3300, 782, 6432, 1759, 6486, 3221, 1170, 1139, 3341, 4638, 3144, 2945, 8024, 2190, 754, 6821, 763, 4522, 6241, 8024, 2769, 738, 2400, 3313, 1922, 6814, 1762, 2692, 8024, 1166, 4638, 2769, 679]
- input_ids [21134, 1348, 671, 3613, 677, 3373, 749, 8024, 6821, 3613, 3683, 677, 3613, 6820, 4080, 1220, 8024, 4493, 5635, 4080, 1220, 1168, 749, 677, 837, 749, 4995, 5688, 1316, 679, 4761, 6887, 1355, 1139, 3341, 4638, 1765, 3635, 511, 21133, 21134, 2219, 2217, 8024, 1068, 754, 3173, 741, 8024, 677, 3373, 1184, 2768, 5327, 1962, 2533, 3300, 763, 1139, 725, 1759, 6486, 4638, 2692, 3160, 8024, 2190, 754, 6821, 819, 1331, 4798, 4638, 2768, 5327, 8024, 1759, 6486, 2552, 7027, 6820, 4696, 3300, 1126, 1146, 2684, 2607, 680, 2558, 2559, 8024, 6006, 6432, 3295, 5307, 3300, 782, 6432, 1759, 6486, 3221, 1170, 1139, 3341, 4638, 3144, 2945, 8024, 2190, 754, 6821, 763, 4522, 6241, 8024, 2769, 738, 2400, 3313, 1922, 6814, 1762, 2692, 8024, 1166, 4638, 2769, 679]
- token_type_ids [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- attention_mask [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- labels [21134, 1348, 671, 3613, 677, 3373, 749, 8024, 6821, 3613, 3683, 677, 3613, 6820, 4080, 1220, 8024, 4493, 5635, 4080, 1220, 1168, 749, 677, 837, 749, 4995, 5688, 1316, 679, 4761, 6887, 1355, 1139, 3341, 4638, 1765, 3635, 511, 21133, 21134, 2219, 2217, 8024, 1068, 754, 3173, 741, 8024, 677, 3373, 1184, 2768, 5327, 1962, 2533, 3300, 763, 1139, 725, 1759, 6486, 4638, 2692, 3160, 8024, 2190, 754, 6821, 819, 1331, 4798, 4638, 2768, 5327, 8024, 1759, 6486, 2552, 7027, 6820, 4696, 3300, 1126, 1146, 2684, 2607, 680, 2558, 2559, 8024, 6006, 6432, 3295, 5307, 3300, 782, 6432, 1759, 6486, 3221, 1170, 1139, 3341, 4638, 3144, 2945, 8024, 2190, 754, 6821, 763, 4522, 6241, 8024, 2769, 738, 2400, 3313, 1922, 6814, 1762, 2692, 8024, 1166, 4638, 2769, 679]
-
具体是:
在test_model.py里面我们可以初步使用预训练的模型看看效果:
- from transformers import BertTokenizer,GPT2LMHeadModel, AutoModelForCausalLM
- hf_model_path = 'IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese'
- tokenizer = BertTokenizer.from_pretrained(hf_model_path)
- # model = GPT2LMHeadModel.from_pretrained(hf_model_path)
- model = AutoModelForCausalLM.from_pretrained(hf_model_path)
-
- def generate_word_level(input_text,n_return=5,max_length=128,top_p=0.9):
- inputs = tokenizer(input_text,return_tensors='pt',add_special_tokens=False).to(model.device)
- gen = model.generate(
- inputs=inputs['input_ids'],
- max_length=max_length,
- do_sample=True,
- top_p=top_p,
- eos_token_id=21133,
- pad_token_id=0,
- num_return_sequences=n_return)
-
- sentences = tokenizer.batch_decode(gen)
- for idx,sentence in enumerate(sentences):
- print(f'sentence {idx}: {sentence}')
- print('*'*20)
- return gen
- # 西湖的景色
- outputs = generate_word_level('西湖的景色',n_return=5,max_length=128)
- print(outputs)
-
结果:
- sentence 0: 西 湖 的 景 色 很 美 丽, 古 代 有 个 名 叫 : 西 湖 的 湖 南 和 江 南 的 一 段 。 湖 面 上 有 一 座 小 小 的 湖 泊, 有 一 片 湖 泊 和 一 座 小 岛, 有 一 处 小 的 小 镇 。 在 西 湖 里, 每 个 人 都 是 在 湖 边, 你 可 以 在 小 小 湖 里 畅 游 。 西 湖 上 是 古 代 建 筑, 但 湖 水 不 多 。 西 湖 上 是 一 座 水 库, 古 代 有 个 名 叫 : 西 湖 的 湖 南 和 江 南 的 一 段 。 湖
- ********************
- sentence 1: 西 湖 的 景 色 美 不 胜 数 。 近 日, 位 于 湖 北 省 湖 北 省 石 家 庄 市 的 石 家 庄 旅 游 风 景 区 被 命 名 为 " 湖 北 省 国 家 级 森 林 公 园 " 。 园 内 有 一 座 石 屋, 位 于 石 屋 与 石 屋 的 对 面, 总 面 积 3. 2 平 方 公 里, 其 中 一 座 石 屋, 由 石 屋 和 石 屋 组 成, 一 栋 大 型 石 屋 由 石 屋 组 成, 三 栋 石 屋 由 石 屋 组 成 。 石 屋 主 要 是 一 座 石 屋
- ********************
- sentence 2: 西 湖 的 景 色 在 古 城 、 小 镇 和 城 郊 中, 有 大 片 的 湖 泊, 是 古 典 中 的 佳 肴, 湖 水 清 澈, 湖 中 有 一 大 块 鱼, 在 湖 水 里 散 发 着 浓 郁 的 清 香 。 湖 水 中, 有 各 种 颜 色 的 鱼 、 蟹 、 贝 壳 类 的 水 产 品 。 湖 边 有 的 池 塘 也 有 的 水 果 摊 位, 可 供 上 千 家 店 。 在 湖 中 央 的 湖 中 央 有 三 个 小 水 塘, 水 塘 长 约 三 丈, 两 端 长, 塘 底
- ********************
- sentence 3: 西 湖 的 景 色 也 很 漂 亮, 可 以 说 是 城 市 的 象 征, 而 且 还 有 小 小 的 山 洞, 看 到 了, 我 们 在 西 湖 的 中 心 也 很 近, 所 以 也 没 有 停 止, 西 湖 的 风 景 很 秀 美, 我 们 也 不 愿 意 停 留 在 这 样 的 地 方 。 西 湖 是 世 界 上 最 美 的 湖 泊, 也 是 最 令 人 羡 慕 的 旅 游 区, 西 湖 的 美 丽 不 容 小 视, 是 我 们 心 中 最 美 的 风 景 。 西 湖 在 西 湖
- ********************
- sentence 4: 西 湖 的 景 色 是 如 此 独 特, 那 水 碧 草 如 黛, 池 水 清 新, 一 池 青 湖, 游 人 可 以 品 一 小 池 花 。 " " 好 景 如 画, 山 清 水 秀, 碧 草 如 茵, 池 清 潭 秀 。 " 黄 湖 " 是 西 湖 的 " 绿 色 湖 " 。 西 湖 的 景 色 是 如 此 独 特, 那 水 碧 草 如 黛, 池 水 清 新, 一 池 青 湖, 游 人 可 以 品 一 小 池 花 。 " " 好 景 如 画, 山 清 水 秀, 碧 草 如 茵
- ********************
-
接下来是使用该模型针对我们自己的数据进行继续预训练了。需要注意的几个地方:
- model_vocab_size = model.get_output_embeddings().weight.size(0)
- model.resize_token_embeddings(len(tokenizer))
-
训练指令:
- torchrun --nnodes 1 --nproc_per_node 1 run_clm_pt_with_peft.py --deepspeed ds_zero2_no_offload.json --model_name_or_path IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese --tokenizer_name_or_path IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese --dataset_dir data --data_cache_dir temp_data_cache_dir --validation_split_percentage 0.001 --per_device_train_batch_size 32 --per_device_eval_batch_size 16 --do_train --seed $RANDOM --fp16 --max_steps 2500 --lr_scheduler_type cosine --learning_rate 2e-4 --warmup_ratio 0.05 --weight_decay 0.01 --logging_strategy steps --logging_steps 10 --save_strategy steps --save_total_limit 3 --save_steps 50 --gradient_accumulation_steps 1 --preprocessing_num_workers 8 --block_size 512 --output_dir output_dir --overwrite_output_dir --ddp_timeout 30000 --logging_first_step True --lora_rank 8 --lora_alpha 32 --trainable c_attn --modules_to_save transformer.wte,lm_head --lora_dropout 0.05 --torch_dtype float16 --gradient_checkpointing --ddp_find_unused_parameters False
-
即:
- torchrun --nnodes 1 --nproc_per_node 1 run_clm_pt_with_peft.py \
- --deepspeed ds_zero2_no_offload.json \
- --model_name_or_path IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese \
- --tokenizer_name_or_path IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese \
- --dataset_dir data \
- --data_cache_dir temp_data_cache_dir \
- --validation_split_percentage 0.001 \
- --per_device_train_batch_size 32 \
- --per_device_eval_batch_size 16 \
- --do_train --seed $RANDOM \
- --fp16 \
- --max_steps 2500 \
- --lr_scheduler_type cosine \
- --learning_rate 2e-4 \
- --warmup_ratio 0.05 \
- --weight_decay 0.01 \
- --logging_strategy steps \
- --logging_steps 10 \
- --save_strategy steps \
- --save_total_limit 3 \
- --save_steps 50 \
- --gradient_accumulation_steps 1 \
- --preprocessing_num_workers 8 \
- --block_size 512 \
- --output_dir output_dir \
- --overwrite_output_dir \
- --ddp_timeout 30000 \
- --logging_first_step True \
- --lora_rank 8 \
- --lora_alpha 32 \
- --trainable c_attn \
- --modules_to_save transformer.wte,lm_head \
- --lora_dropout 0.05 \
- --torch_dtype float16 \
- --gradient_checkpointing \
- --ddp_find_unused_parameters False
-
由于使用了seepspeed中ZeRo,占用的显存会更小。
最后我们可以这么使用模型,在test_pretrained_model.py中:
- import os
- import torch
- from transformers import BertTokenizer,GPT2LMHeadModel, AutoModelForCausalLM
- from peft import PeftModel
- hf_model_path = 'IDEA-CCNL/Wenzhong2.0-GPT2-110M-BertTokenizer-chinese'
- tokenizer = BertTokenizer.from_pretrained(hf_model_path)
- # model = GPT2LMHeadModel.from_pretrained(hf_model_path)
- model = AutoModelForCausalLM.from_pretrained(hf_model_path)
-
- model_vocab_size = model.get_output_embeddings().weight.size(0)
- model.resize_token_embeddings(len(tokenizer))
-
- model = PeftModel.from_pretrained(model, os.path.join("output_dir", "adapter_model"), torch_dtype=torch.float32)
- model.cuda()
- model.eval()
-
- def generate_word_level(input_text,n_return=5,max_length=128,top_p=0.9):
- inputs = tokenizer(input_text,return_tensors='pt',add_special_tokens=False).to(model.device)
- gen = model.generate(
- inputs=inputs['input_ids'],
- max_length=max_length,
- do_sample=True,
- top_p=top_p,
- eos_token_id=21133,
- pad_token_id=0,
- num_return_sequences=n_return)
-
- sentences = tokenizer.batch_decode(gen)
- for idx,sentence in enumerate(sentences):
- print(f'sentence {idx}: {sentence}')
- print('*'*20)
- return gen
-
- outputs = generate_word_level('眼角斜瞥着柳翎那略微有些阴沉的脸庞。萧炎',n_return=5,max_length=128)
- print(outputs)
-
结果:
- sentence 0: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 淡 淡 的 道 。 <|endoftext|> [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]
- ********************
- sentence 1: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 一 怔 。 手 掌 猛 然 一 僵 。 手 指 一 扯 。 旋 即 在 房 门 内 停 留 。 旋 即 一 口 鲜 血 喷 涌 而 出 。 <|endoftext|>
- ********************
- sentence 2: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 顿 时 愣 了 愣 。 他 这 是 何 人 ? 怎 能 知 道 这 位 灰 袍 老 者 出 手 啊 ? <|endoftext|> [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]
- ********************
- sentence 3: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 心 中 有 着 什 么 感 触 ? <|endoftext|> [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]
- ********************
- sentence 4: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 微 皱 着 眉 头 。 转 过 身 。 轻 声 道 : “ 柳 翎 。 是 你 的 人 ? ” <|endoftext|> [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]
- ********************
-
对于没有经过继续预训练的模型结果:
- sentence 0: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎, 男, 1964 年 生, 河 北 齐 齐 哈 尔 市 人 。 1979 年 毕 业 于 武 汉 工 学 院 中 文 系, 1988 年 毕 业 于 中 国 人 民 大 学 中 文 系, 历 任 中 国 人 民 大 学 高 级 教 师 、 教 育 部 大 学 文 学 系 主 任, 中 国 语 言 文 学 会 理 事, 中 国 人 民 大 学 历 史 学 会 副 会 长, 中 国 作 家 协 会 员, 中 国 作 家 协 会 会
- ********************
- sentence 1: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 的 脸 庞 在 不 同 时 期 会 发 出 来 , 这 样 的 眉 目 和 眉 目 能 够 很 容 易 的 在 一 起 , 能 够 让 人 看 得 见 的 就 是 这 样 的 眉 目 。 那 一 对 情 侣 还 是 非 常 喜 欢 的 , 不 过 他 们 的 交 往 方 式 也 是 各 种 多 样 的 , 最 后 的 交 往 方 式 就 是 让 所 有 的 人 都 看 到 了 自 己 的 内 心 。 他 们 俩 是 非 常 相
- ********************
- sentence 2: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 眼 睛 看 向 柳 翎, 眼 眸 里 满 是 伤 痕 。 “ 天 边 来 客 。 ” 柳 翎 那 无 情 的 目 光 中 透 着 几 分 冷 漠 的 微 笑 。 “ 没 有 你 的 名 字, 你 只 是 名 字 。 ” 柳 翎 在 柳 翎 眼 前 一 怔, 无 意 中 却 看 出 了 柳 翎 已 经 在 想 要 离 开 了 。 柳 翎 说 这 些 东 西 有 的 是 一 次 次 的 意 外, 她 还 是 有 意 的,
- ********************
- sentence 3: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 的 脸 上 只 有 几 分 阴 沉, 但 却 能 够 带 着 微 微 的 怜 惜 之 心 。 萧 炎 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 眼 角
- ********************
- sentence 4: 眼 角 斜 瞥 着 柳 翎 那 略 微 有 些 阴 沉 的 脸 庞 。 萧 炎 已 经 是 年 轻 貌 美 的 人, 在 某 处 留 下 的 是 无 尽 的 光 影 。 她 的 微 笑 也 在 耳 畔 闪 烁 着 光 影 。 他 不 断 地 伸 出 手 指, 他 在 他 的 微 笑 中 轻 松 地 走 着, 而 柳 翎 却 始 终 沉 默 。 他 已 经 是 个 女 孩 子, 在 某 处 也 许 你 听 不 见 。 他 轻 轻 地 接 过 他 的 手, 轻 轻 地 说 道 : " 没 有 人 听
- ********************
-
模型确实得到了有效的训练。
到这里,你已经了解了怎么构建中文词表并继续预训练了,接下来可能你还想了解指令微调,那我们下期再见。