2025年2月19日,YOLOv12发布,YOLOv12与其它YOLO模型的对比如下:
论文地址:https://arxiv.org/pdf/2502.12524
代码地址:https://github.com/sunsmarterjie/yolov12
YOLOv12在继承YOLO系列高效性的同时,引入了注意力机制(attention mechanisms),显著提升了检测精度,同时保持了快速的推理速度。YOLOv12通过一系列创新的设计和架构改进,打破了传统卷积神经网络(CNN)在YOLO系列中的主导地位,证明了注意力机制在实时目标检测中的潜力。
YOLOv12的主要贡献包括:
YOLOv12提出了一种名为“Area Attention”的注意力机制,将注意力分解为水平和垂直两个方向。
A2模块代码实现如下:
- class AAttn(nn.Module):
- """
- Area-attention module with the requirement of flash attention.
-
- Attributes:
- dim (int): Number of hidden channels;
- num_heads (int): Number of heads into which the attention mechanism is divided;
- area (int, optional): Number of areas the feature map is divided. Defaults to 1.
-
- Methods:
- forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.
-
- Examples:
- >>> import torch
- >>> from ultralytics.nn.modules import AAttn
- >>> model = AAttn(dim=64, num_heads=2, area=4)
- >>> x = torch.randn(2, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
-
- Notes:
- recommend that dim//num_heads be a multiple of 32 or 64.
-
- """
-
- def __init__(self, dim, num_heads, area=1):
- """Initializes the area-attention module, a simple yet efficient attention module for YOLO."""
- super().__init__()
- self.area = area
-
- self.num_heads = num_heads
- self.head_dim = head_dim = dim // num_heads
- all_head_dim = head_dim * self.num_heads
-
- self.qkv = Conv(dim, all_head_dim * 3, 1, act=False)
- self.proj = Conv(all_head_dim, dim, 1, act=False)
- self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)
-
-
- def forward(self, x):
- """Processes the input tensor 'x' through the area-attention"""
- B, C, H, W = x.shape
- N = H * W
-
- qkv = self.qkv(x).flatten(2).transpose(1, 2)
- if self.area > 1:
- qkv = qkv.reshape(B * self.area, N // self.area, C * 3)
- B, N, _ = qkv.shape
- q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split(
- [self.head_dim, self.head_dim, self.head_dim], dim=3
- )
-
- if x.is_cuda:
- x = flash_attn_func(
- q.contiguous().half(),
- k.contiguous().half(),
- v.contiguous().half()
- ).to(q.dtype)
- else:
- q = q.permute(0, 2, 3, 1)
- k = k.permute(0, 2, 3, 1)
- v = v.permute(0, 2, 3, 1)
- attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)
- max_attn = attn.max(dim=-1, keepdim=True).values
- exp_attn = torch.exp(attn - max_attn)
- attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)
- x = (v @ attn.transpose(-2, -1))
- x = x.permute(0, 3, 1, 2)
- v = v.permute(0, 3, 1, 2)
-
- if self.area > 1:
- x = x.reshape(B // self.area, N * self.area, C)
- v = v.reshape(B // self.area, N * self.area, C)
- B, N, _ = x.shape
-
- x = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
- v = v.reshape(B, H, W, C).permute(0, 3, 1, 2)
-
- x = x + self.pe(v)
- x = self.proj(x)
- return x
-
-
- class ABlock(nn.Module):
- """
- ABlock class implementing a Area-Attention block with effective feature extraction.
-
- This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areas
- and feed-forward neural network layers.
-
- Attributes:
- dim (int): Number of hidden channels;
- num_heads (int): Number of heads into which the attention mechanism is divided;
- mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;
- area (int, optional): Number of areas the feature map is divided. Defaults to 1.
-
- Methods:
- forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers.
-
- Examples:
- Create a ABlock and perform a forward pass
- >>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4)
- >>> x = torch.randn(2, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
-
- Notes:
- recommend that dim//num_heads be a multiple of 32 or 64.
- """
-
- def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1):
- """Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction."""
- super().__init__()
-
- self.attn = AAttn(dim, num_heads=num_heads, area=area)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))
-
- self.apply(self._init_weights)
-
- def _init_weights(self, m):
- """Initialize weights using a truncated normal distribution."""
- if isinstance(m, nn.Conv2d):
- trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Conv2d) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
-
- def forward(self, x):
- """Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor."""
- x = x + self.attn(x)
- x = x + self.mlp(x)
- return x
-
并利用Area Attention(A2)作为主要的特征提取模块,提出了R-ELAN。
R-ELAN代码实现如下:
我们发现,并非所有的特征提取模块都替换为了A2C2f,而是在较小的尺度上使用A2C2f,这可能是出于时间复杂度的考虑,在大的尺度上使用A2C2f,将会很大程度的增加计算量。
-
- class A2C2f(nn.Module):
- """
- A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELAN
-
- This class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction.
-
- Attributes:
- c1 (int): Number of input channels;
- c2 (int): Number of output channels;
- n (int, optional): Number of 2xABlock modules to stack. Defaults to 1;
- a2 (bool, optional): Whether use area-attention. Defaults to True;
- area (int, optional): Number of areas the feature map is divided. Defaults to 1;
- residual (bool, optional): Whether use the residual (with layer scale). Defaults to False;
- mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;
- e (float, optional): Expansion ratio for R-ELAN modules. Defaults to 0.5.
- g (int, optional): Number of groups for grouped convolution. Defaults to 1;
- shortcut (bool, optional): Whether to use shortcut connection. Defaults to True;
-
- Methods:
- forward: Performs a forward pass through the A2C2f module.
-
- Examples:
- >>> import torch
- >>> from ultralytics.nn.modules import A2C2f
- >>> model = A2C2f(c1=64, c2=64, n=2, a2=True, area=4, residual=True, e=0.5)
- >>> x = torch.randn(2, 64, 128, 128)
- >>> output = model(x)
- >>> print(output.shape)
- """
-
- def __init__(self, c1, c2, n=1, a2=True, area=1, residual=False, mlp_ratio=2.0, e=0.5, g=1, shortcut=True):
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."
-
- # num_heads = c_ // 64 if c_ // 64 >= 2 else c_ // 32
- num_heads = c_ // 32
-
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv((1 + n) * c_, c2, 1) # optional act=FReLU(c2)
-
- init_values = 0.01 # or smaller
- self.gamma = nn.Parameter(init_values * torch.ones((c2)), requires_grad=True) if a2 and residual else None
-
- self.m = nn.ModuleList(
- nn.Sequential(*(ABlock(c_, num_heads, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n)
- )
-
- def forward(self, x):
- """Forward pass through R-ELAN layer."""
- y = [self.cv1(x)]
- y.extend(m(y[-1]) for m in self.m)
- if self.gamma is not None:
- return x + (self.gamma * self.cv2(torch.cat(y, 1)).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
- return self.cv2(torch.cat(y, 1))
YOLOv12的模型结构如下:
-
- # YOLOv12 🚀, AGPL-3.0 license
- # YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
-
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 465 layers, 2,603,056 parameters, 2,603,040 gradients, 6.7 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 465 layers, 9,285,632 parameters, 9,285,616 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 501 layers, 20,201,216 parameters, 20,201,200 gradients, 68.1 GFLOPs
- l: [1.00, 1.00, 512] # summary: 831 layers, 26,454,880 parameters, 26,454,864 gradients, 89.7 GFLOPs
- x: [1.00, 1.50, 512] # summary: 831 layers, 59,216,928 parameters, 59,216,912 gradients, 200.3 GFLOPs
-
- # YOLO12n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 2, C3k2, [256, False, 0.25]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 2, C3k2, [512, False, 0.25]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 4, A2C2f, [512, True, 4]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 4, A2C2f, [1024, True, 1]] # 8
-
- # YOLO12n head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, A2C2f, [512, False, -1]] # 11
-
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, A2C2f, [256, False, -1]] # 14
-
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 11], 1, Concat, [1]] # cat head P4
- - [-1, 2, A2C2f, [512, False, -1]] # 17
-
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 8], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
-
- - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)
可以发现,并非所有的特征提取模块都替换为了A2C2f,而是在较小的尺度上使用A2C2f,这可能是出于时间复杂度的考虑,在大的尺度上使用A2C2f,将会很大程度的增加计算量。
以下是YOLOv12与其它几个版本YOLO的对比。
可以发现,YOLOv12在AP上达到了YOLO模型的最佳水平。美中不足的是,YOLO12在推理速度上略低于YOLO11模型,但零点几毫秒的延迟几乎可以忽略不记。
论文还对不同模型的特征图做了可视化,YOLOv12的注意力能够更加有效地保持目标的特征。
YOLOv12成功地将注意力机制引入实时目标检测框架,通过Area Attention、R-ELAN和架构优化等创新设计,实现了精度与效率的双重提升。该研究不仅挑战了CNN在YOLO系列中的主导地位,还为未来实时目标检测的发展提供了新的方向。