2025年3月28日 星期五 甲辰(龙)年 月廿七 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > 人工智能

利用深度学习实现验证码识别-4-ResNet18+imagecaptcha

时间:09-24来源:作者:点击数:43
城东书院 www.cdsy.xyz

在当今的数字化世界中,验证码(CAPTCHA)是保护网站免受自动化攻击的重要工具。然而,对于用户来说,验证码有时可能会成为一种烦恼。为了解决这个问题,我们可以利用深度学习技术来自动识别验证码,从而提高用户体验。本文将介绍如何使用ResNet18模型来识别ImageCaptcha生成的验证码。

在这里插入图片描述
1. 环境设置与数据准备

首先,我们需要检查CUDA是否可用,以便利用GPU加速训练过程。

  • device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  • print(f'Using device: {device}')

接下来,我们定义一个数据生成器CaptchaDataset,它使用imagecaptcha库生成验证码图像。

  • class CaptchaDataset(Dataset):
  • def __init__(self, length=1000, charset=None, captcha_length=5, transform=None):
  • self.length = length
  • self.transform = transform
  • self.charset = charset if charset is not None else string.ascii_letters + string.digits
  • self.captcha_length = captcha_length
  • self.num_classes = len(self.charset)
  • self.image_generator = ImageCaptcha(width=160, height=60)
  • def __len__(self):
  • return self.length
  • def __getitem__(self, idx):
  • text = ''.join(random.choices(self.charset, k=self.captcha_length))
  • image = self.image_generator.generate_image(text)
  • if self.transform:
  • image = self.transform(image)
  • label = [self.charset.index(c) for c in text]
  • return image, torch.tensor(label, dtype=torch.long)
2. 数据增强与预处理

为了提高模型的泛化能力,我们使用了一系列的数据增强和预处理步骤。

  • transform = transforms.Compose([
  • transforms.Grayscale(), # 将图像转换为灰度
  • transforms.Resize((40, 100)),
  • transforms.ToTensor(),
  • transforms.Normalize((0.5,), (0.5,))
  • ])
3. 数据集划分与加载

我们将数据集划分为训练集和验证集,并使用DataLoader进行批量加载。

  • dataset = CaptchaDataset(length=2000, charset=charset, captcha_length=captcha_length, transform=transform)
  • train_size = int(0.8 * len(dataset))
  • val_size = len(dataset) - train_size
  • train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
  • train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
  • val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
4. 模型定义与迁移学习

我们使用预训练的ResNet18模型,并对其进行微调以适应验证码识别任务。

  • class CaptchaModel(nn.Module):
  • def __init__(self, num_classes, captcha_length):
  • super(CaptchaModel, self).__init__()
  • self.captcha_length = captcha_length
  • self.resnet = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
  • self.resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
  • num_ftrs = self.resnet.fc.in_features
  • self.resnet.fc = nn.Linear(num_ftrs, num_classes * self.captcha_length)
  • def forward(self, x):
  • x = self.resnet(x)
  • return x.view(-1, self.captcha_length, num_classes)
5. 训练与评估

我们定义了训练函数train_model,并在每个epoch结束时保存模型检查点。

  • def train_model(epochs, resume=False):
  • start_epoch = 0
  • if resume and os.path.isfile("captcha_model_checkpoint.pth.tar"):
  • checkpoint = load_checkpoint()
  • model.load_state_dict(checkpoint['state_dict'])
  • optimizer.load_state_dict(checkpoint['optimizer'])
  • start_epoch = checkpoint['epoch']
  • scaler = torch.cuda.amp.GradScaler()
  • for epoch in range(start_epoch, epochs):
  • model.train()
  • running_loss = 0.0
  • for images, labels in train_loader:
  • images, labels = images.to(device), labels.to(device)
  • optimizer.zero_grad()
  • with torch.cuda.amp.autocast():
  • outputs = model(images)
  • loss = sum(criterion(outputs[:, i, :], labels[:, i]) for i in range(captcha_length))
  • scaler.scale(loss).backward()
  • scaler.step(optimizer)
  • scaler.update()
  • running_loss += loss.item()
  • val_accuracy = evaluate_accuracy(val_loader)
  • print(f'Epoch [{epoch+1}/{epochs}], Loss: {running_loss / len(train_loader):.4f}, Val Accuracy: {val_accuracy:.4f}')
  • save_checkpoint({
  • 'epoch': epoch + 1,
  • 'state_dict': model.state_dict(),
  • 'optimizer': optimizer.state_dict(),
  • })
6. 可视化预测结果

最后,我们定义了一个函数visualize_predictions来可视化模型的预测结果。

  • def visualize_predictions(num_samples=16):
  • model.eval()
  • samples, labels = next(iter(DataLoader(val_dataset, batch_size=num_samples, shuffle=True)))
  • samples, labels = samples.to(device), labels.to(device)
  • with torch.no_grad():
  • outputs = model(samples)
  • predicted = torch.argmax(outputs, dim=2)
  • samples = samples.cpu()
  • predicted = predicted.cpu()
  • labels = labels.cpu()
  • fig, axes = plt.subplots(4, 4, figsize=(10, 10))
  • for i in range(16):
  • ax = axes[i // 4, i % 4]
  • ax.imshow(samples[i].squeeze(), cmap='gray')
  • true_text = ''.join([dataset.charset[l] for l in labels[i]])
  • pred_text = ''.join([dataset.charset[p] for p in predicted[i]])
  • ax.set_title(f'True: {true_text}\nPred: {pred_text}')
  • ax.axis('off')
  • plt.show()
7. 训练与可视化

最后,我们调用train_model函数进行模型训练,并使用visualize_predictions函数来可视化模型的预测结果。

  • train_model(epochs=180, resume=True)
  • visualize_predictions()

通过上述步骤,我们成功地使用ResNet18模型来识别ImageCaptcha生成的验证码。这种方法不仅提高了验证码识别的准确性,还提升了用户体验。希望本文能为您在验证码识别领域的研究和应用提供有价值的参考。

在这里插入图片描述
城东书院 www.cdsy.xyz
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐