2025年3月28日 星期五 甲辰(龙)年 月廿七 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > 人工智能

利用深度学习实现验证码识别-3-ResNet18

时间:09-24来源:作者:点击数:27

在当今数字化时代,验证码作为一种重要的安全验证手段,广泛应用于各种网络场景。然而,传统的验证码识别方法往往效率低下,准确率不高。今天,我们将介绍一种基于 ResNet18 的验证码识别方法,它能够高效、准确地识别验证码,为网络安全提供有力保障。

在这里插入图片描述

一、技术背景

深度学习技术在图像识别领域取得了巨大的成功,ResNet18 作为一种经典的深度神经网络架构,具有强大的特征提取能力和良好的泛化性能。我们利用 ResNet18 的这些优势,将其应用于验证码识别任务中,通过迁移学习的方法,快速训练出一个高效的验证码识别模型。

以下是实现 ResNet18 验证码识别的代码:

  • import torch.nn as nn
  • import torch.optim as optim
  • from torch.utils.data import DataLoader, Dataset, random_split
  • from torchvision import transforms, models
  • import random
  • import string
  • from PIL import Image, ImageDraw, ImageFont
  • import os
  • import matplotlib.pyplot as plt
  • # 检查 CUDA 是否可用
  • device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  • print(f'Using device: {device}')
  • # 数据生成器,支持自定义字符集和验证码长度
  • class CaptchaDataset(Dataset):
  • def __init__(self, length=1000, charset=None, captcha_length=5, transform=None):
  • self.length = length
  • self.transform = transform
  • self.charset = charset if charset is not None else string.ascii_letters + string.digits
  • self.captcha_length = captcha_length
  • self.num_classes = len(self.charset)
  • self.font = ImageFont.truetype("arial.ttf", 40)
  • self.image_size = (100, 40)
  • def __len__(self):
  • return self.length
  • def __getitem__(self, idx):
  • text = ''.join(random.choices(self.charset, k=self.captcha_length))
  • image = Image.new('L', self.image_size, color=255)
  • draw = ImageDraw.Draw(image)
  • draw.text((10, 5), text, font=self.font, fill=0)
  • if self.transform:
  • image = self.transform(image)
  • label = [self.charset.index(c) for c in text]
  • return image, torch.tensor(label, dtype=torch.long)
  • # 数据增强和预处理
  • transform = transforms.Compose([
  • transforms.Resize((40, 100)),
  • transforms.RandomRotation(10),
  • transforms.ColorJitter(brightness=0.5, contrast=0.5),
  • transforms.ToTensor(),
  • transforms.Normalize((0.5,), (0.5,))
  • ])
  • # 设置字符集和验证码长度
  • charset = string.digits # 仅支持数字
  • captcha_length = 4 # 验证码长度设置为 6 位
  • dataset = CaptchaDataset(length=2000, charset=charset, captcha_length=captcha_length, transform=transform)
  • train_size = int(0.8 * len(dataset))
  • val_size = len(dataset) - train_size
  • train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
  • train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
  • val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
  • # 使用预训练 ResNet 模型,迁移学习
  • class CaptchaModel(nn.Module):
  • def __init__(self, num_classes, captcha_length):
  • super(CaptchaModel, self).__init__()
  • self.captcha_length = captcha_length
  • self.resnet = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
  • self.resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
  • num_ftrs = self.resnet.fc.in_features
  • self.resnet.fc = nn.Linear(num_ftrs, num_classes * self.captcha_length) # 动态调整输出层大小
  • def forward(self, x):
  • x = self.resnet(x)
  • return x.view(-1, self.captcha_length, num_classes)
  • # 初始化模型,损失函数和优化器
  • num_classes = len(charset)
  • model = CaptchaModel(num_classes=num_classes, captcha_length=captcha_length).to(device)
  • criterion = nn.CrossEntropyLoss()
  • optimizer = optim.Adam(model.parameters(), lr=0.001)
  • # 加载或保存训练检查点
  • def save_checkpoint(state, filename="captcha_model_checkpoint.pth.tar"):
  • print("=> Saving checkpoint")
  • torch.save(state, filename)
  • def load_checkpoint(filename="captcha_model_checkpoint.pth.tar"):
  • print("=> Loading checkpoint")
  • return torch.load(filename)
  • # 支持多次训练,从检查点恢复训练
  • def train_model(epochs, resume=False):
  • start_epoch = 0
  • if resume and os.path.isfile("captcha_model_checkpoint.pth.tar"):
  • checkpoint = load_checkpoint()
  • model.load_state_dict(checkpoint['state_dict'])
  • optimizer.load_state_dict(checkpoint['optimizer'])
  • start_epoch = checkpoint['epoch']
  • scaler = torch.cuda.amp.GradScaler()
  • for epoch in range(start_epoch, epochs):
  • model.train()
  • running_loss = 0.0
  • for images, labels in train_loader:
  • images, labels = images.to(device), labels.to(device)
  • optimizer.zero_grad()
  • with torch.cuda.amp.autocast():
  • outputs = model(images)
  • loss = sum(criterion(outputs[:, i, :], labels[:, i]) for i in range(captcha_length))
  • scaler.scale(loss).backward()
  • scaler.step(optimizer)
  • scaler.update()
  • running_loss += loss.item()
  • # 计算验证集准确率
  • val_accuracy = evaluate_accuracy(val_loader)
  • print(f'Epoch [{epoch+1}/{epochs}], Loss: {running_loss/len(train_loader):.4f}, Val Accuracy: {val_accuracy:.4f}')
  • # 保存检查点
  • save_checkpoint({
  • 'epoch': epoch + 1,
  • 'state_dict': model.state_dict(),
  • 'optimizer': optimizer.state_dict(),
  • })
  • # 计算准确率
  • def evaluate_accuracy(data_loader):
  • model.eval()
  • correct = 0
  • total = 0
  • with torch.no_grad():
  • for images, labels in data_loader:
  • images, labels = images.to(device), labels.to(device)
  • outputs = model(images)
  • predicted = torch.argmax(outputs, dim=2)
  • total += labels.size(0) * captcha_length
  • correct += (predicted == labels).sum().item()
  • return correct / total
  • # 可视化模型预测结果
  • def visualize_predictions(num_samples=16):
  • model.eval()
  • samples, labels = next(iter(DataLoader(val_dataset, batch_size=num_samples, shuffle=True)))
  • samples, labels = samples.to(device), labels.to(device)
  • with torch.no_grad():
  • outputs = model(samples)
  • predicted = torch.argmax(outputs, dim=2)
  • samples = samples.cpu()
  • predicted = predicted.cpu()
  • labels = labels.cpu()
  • fig, axes = plt.subplots(4, 4, figsize=(10, 10))
  • for i in range(16):
  • ax = axes[i // 4, i % 4]
  • ax.imshow(samples[i].squeeze(), cmap='gray')
  • true_text = ''.join([dataset.charset[l] for l in labels[i]])
  • pred_text = ''.join([dataset.charset[p] for p in predicted[i]])
  • ax.set_title(f'True: {true_text}\nPred: {pred_text}')
  • ax.axis('off')
  • plt.show()
  • # 训练模型
  • train_model(epochs=20, resume=False)
  • # 可视化模型预测结果
  • visualize_predictions()
在这里插入图片描述
在这里插入图片描述

四、模型评估与可视化

  1. 准确率计算:我们使用准确率作为模型的评估指标,计算方法是将模型预测正确的验证码数量除以总验证码数量。在验证集上的准确率可以反映模型的泛化能力。
  2. 可视化预测结果:为了更好地理解模型的预测结果,我们使用可视化方法展示了模型在验证集上的预测结果。具体来说,我们随机选择了一些验证码图像,并将其输入到模型中进行预测。然后,我们将模型的预测结果与真实结果进行比较,并以图像的形式展示出来。

五、总结与展望

通过使用 ResNet18 进行验证码识别,我们取得了较好的效果。在未来的工作中,我们可以进一步优化模型架构和训练方法,提高模型的准确率和效率。同时,我们还可以将该方法应用于其他类型的验证码识别任务中,为网络安全提供更加全面的保障。

总之,ResNet18 为验证码识别提供了一种新的思路和方法,它具有强大的特征提取能力和良好的泛化性能,能够高效、准确地识别验证码。相信在未来的发展中,深度学习技术将在验证码识别领域发挥更加重要的作用。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐