2025年3月28日 星期五 甲辰(龙)年 月廿七 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > 人工智能

保姆级教程:手把手教你使用深度学习处理文本

时间:08-05来源:作者:点击数:21
城东书院 www.cdsy.xyz

大家好,今天给大家分享使用深度学习处理文本,更多技术干货,后面会陆续分享出来,感兴趣可以持续关注。

NLP技术历程

NLP技术的大致发展历程:

  • 20世纪80年代末,基于决策树和统计学习
  • 21世纪10年代,基于Logistic和统计学
  • 2014-2017年,基于RNN;尤其是双向LSTM
  • 2017-2018年,Transformer架构出现了

准备数据

  1. 文本标准化:大小写转化、去除标点等
  2. 词元化:将文本拆分成一个个单元(或者称之为词元token),比如字符或者单词、词组等
  3. 向量化,建立索引:将每个词元转成数值向量,同时建立索引
标准化

常用的标准化方法:

  1. 将所有字母转化成小写并且删除特殊符号
  2. 将特殊字符转成标准形式,比如英文中过去式、现在进行时转成标准形式,gone、went --->go

需要注意:某些符号词元在特定的场景下有具体的作用或者含义,则不能直接删除。

词元化Tokenization(文本拆分)

词元化的3种方法:

  1. 单词级词元化 word-level-tokenization:词元是以空格或者标点分隔的子字符串,比如staring拆分成star + ingcalled拆分成call + ed
  2. N元语法词元化 N-gram-tokenization:词元是连续的N个单词
  3. 字符级词元 character-level tokenizaition:每个字符都是词元;很少用,在文本生成和语音识别应用多。

两种文本处理模型:

  • 序列模型sequence model:关注词序的模型;使用单词级词元化 word-level-tokenization
  • 词袋模型bag-of-words model:将输入的单词看做一个集合,不考虑顺序;使用N元语法词元化 N-gram-tokenization
建立索引表

将每个词元编码为数值表示,比如将每个词元编码为一个固定的二进制向量:

  • vocabulary = {}
  • for text in dataset: # 遍历数据集
  • text = standardize(text) # 文本标准化过程
  • tokens = tokenize(text) # 生成词元
  • for token in tokens: # 遍历tokens
  • if token not in vocabulary:
  • vocabulary[token] = len(vocabulary) # 为词表中的每个单词分配唯一整数

将整数进行向量化:

  • def one_hot_encode_token(token):
  • vector = np.zeros(len(vocabulary)) # 初始为全0向量
  • token_index = vocabulary[token] # 某个token的索引(整数)
  • vector[token_index] = 1 # 该索引位置的值置为1
  • return vector

需要注意3点:

  1. 通常限制文本中最常出现的20000或者30000个单词。
  2. 当在词表索引中查找一个新的词元时,可能不存在。使用OOV使用,即Out of Vocabulary。OOV的索引通常是1:token_index = vocabulary.get(token,1)
  3. 掩码词元 maskt token:索引为0,表示的含义是:“别理我,我不是一个单词”。作用:进行序列的填充,保证一批序列数据中每个序列具有相同的长度。
  • [[5,7,8,10,1],
  • [4,1,3]]
  • 通过掩码词元变成:
  • [[5,7,8,10,1],
  • [4,1,3,0,0]]

使用TextVectorization层

手写TextVectorization层

In [1]:

  • # 实现Vectorizer层
  • import string
  • class Vectorizer:
  • def standardize(self, text):
  • text = text.lower() # 全部变成小写
  • result = "".join(char for char in text if char not in string.punctuation)
  • return result
  • def tokenize(self,text):
  • text = self.standardize(text) # 调用标准化函数
  • return text.split()
  • def make_vocabulary(self, dataset):
  • self.vocabulary = {"":0, "[UNK]":1} # 针对掩码索引和OOV索引
  • for text in dataset:
  • text = self.standardize(text) # 标准化
  • tokens = self.tokenize(text) # 词元化
  • for token in tokens:
  • if token not in self.vocabulary:
  • self.vocabulary[token] = len(self.vocabulary)
  • self.inverse_vocabulary = dict((v,k) for k, v in self.vocabulary.items()) # 翻转vocabulary中的键值对
  • def encode(self, text): # 编码过程
  • text = self.standardize(text)
  • tokens = self.tokenize(text)
  • return [self.vocabulary.get(token,1) for token in tokens]
  • def decode(self, int_sequence): # 解码过程
  • result = " ".join(self.inverse_vocabulary.get(i,"[UNK]") for i in int_sequence)
  • return result
  • vectorizer = Vectorizer()
  • dataset = ["I write, erase, rewrite","Erase again and again","A poppy blooms"]
  • vectorizer.make_vocabulary(dataset)

In [2]:

  • test_sequence = "I write, rewrite, and still rewrite again"
  • encoded_sentence = vectorizer.encode(test_sequence)
  • encoded_sentence

Out[2]:

  • [2, 3, 5, 7, 1, 5, 6]

In [3]:

  • decoded_sentence = vectorizer.decode(encoded_sentence)
  • decoded_sentence # still在原文本没有出现,使用OOV索引,用[UNK]表示

Out[3]:

  • 'i write rewrite and [UNK] rewrite again'
Keras自带TextVectorization层

TextVectorization层默认的操作是:

  1. 转成小写
  2. 删除标点符号
  3. 词元化方法是使用空格进行拆分

In [4]:

  • from tensorflow.keras.layers import TextVectorization
  • text_vectorization = TextVectorization(
  • output_mode="int" # 返回值是编码为整数索引的单词序列
  • )

In [5]:

  • # 可以自定方法来标准化和词元化。等同下面的代码
  • import re # 正则模块
  • import string
  • import tensorflow as tf
  • def custom_standardization_fn(string_tensor):
  • lowercase_string = tf.strings.lower(string_tensor) # 转小写
  • return tf.strings.regex_replace(lowercase_string, f'[{re.escape(string.punctuation)}]', '') # 将标点符号替换为空字符串
  • def custom_split_fn(string_tensor):
  • return tf.strings.split(string_tensor) # 基于空格的切割字符串
  • text_vectorization = TextVectorization(output_mode="int",
  • standardize=custom_standardization_fn, # 标准化
  • split=custom_split_fn # 词元化
  • )

对文本语料库的词表建立索引,使用该层的adapt()方法:参数是可以生成字符串的Dataset对象或者由python字符串组成的列表。

In [6]:

  • dataset = ["I write, erase, rewrite",
  • "Erase again and again",
  • "A poppy blooms"
  • ]
  • text_vectorization.adapt(dataset)

获取词表get_vocabulary:词表中的元素按照频率排列

In [7]:

  • # 显示词表
  • text_vectorization.get_vocabulary()

Out[7]:

  • ['',
  • '[UNK]',
  • 'erase',
  • 'again',
  • 'write',
  • 'rewrite',
  • 'poppy',
  • 'i',
  • 'blooms',
  • 'and',
  • 'a']

In [8]:

  • vocabulary = text_vectorization.get_vocabulary()
  • # 测试句子
  • test_sentence = "I write, rewrite, and still rewrite again"
  • # 编码
  • encoded_sentence = text_vectorization(test_sentence)
  • encoded_sentence # 返回的是单词对应的索引-数值

Out[8]:

  • <tf.Tensor: shape=(7,), dtype=int64, numpy=array([7, 4, 5, 9, 1, 5, 3])>

In [9]:

  • inverse_vocab = dict(enumerate(vocabulary))
  • print("inverse_vocab", inverse_vocab) # 单词对应的索引 键-索引,值-单词
  • # 解码
  • decoded_sentence = " ".join(inverse_vocab[int(i)] for i in encoded_sentence)
  • decoded_sentence
  • inverse_vocab {0: '', 1: '[UNK]', 2: 'erase', 3: 'again', 4: 'write', 5: 'rewrite', 6: 'poppy', 7: 'i', 8: 'blooms', 9: 'and', 10: 'a'}

Out[9]:

  • 'i write rewrite and [UNK] rewrite again'
TextVectorization层的使用

TextVectorization层主要是字典的查询操作,不能在GPU或者TPU上运行,只能在CPU上运行

方法1:在tf.data管道中使用TextVectorization层

  • int_sequence_dataset = string_dataset.map( # string_dataset:生成字符串张量的数据集
  • text_vectorization, # 文本标准化的数据
  • num_parallel_calls=4 # 在多个CPU上并行调用map
  • )

方法2: 将TextVectorization层作为模型的一部分来使用

  • text_input = keras.Input(shape=(), dtype="string") # 创建输入的符号张量,数据类型为字符串
  • vectorized_text = text_vectorization(text_input) # 向量化
  • embedded_input = keras.layers.Embedding(...)(vectorized_text) # 添加新的层:就像普通的函数式API
  • output = ...
  • model = keras.Model(text_input, output)

表示单词组的两种方法:集合和序列

  1. 词袋模型bag-of-words model:不考虑文本顺序,将文本看做是一组无序的单词
  2. 序列模型sequence model:比如RNN和Transformer都是考虑了词序的

实战IMDB数据集

准备数据

从斯坦福大学的Andrew Maas的页面下载数据并解压,train/pos目录下有12500个文件,每个文件包含一个正面情绪的影评文本,用作训练集。负面情绪的数据在neg目录下

准备验证集

In [11]:

  • import os, pathlib, shutil, random
  • # 创建3个文件目录
  • base_dir = pathlib.Path("aclImdb")
  • val_dir = base_dir / "val"
  • train_dir = base_dir / "train"

In [12]:

  • base_dir

Out[12]:

  • PosixPath('aclImdb')

In [13]:

  • val_dir

Out[13]:

  • PosixPath('aclImdb/val')

In [14]:

  • train_dir

Out[14]:

  • PosixPath('aclImdb/train')

In [15]:

  • for category in ("neg", "pos"):
  • os.makedirs(val_dir / category) # 创建两个验证集目录
  • files = os.listdir(train_dir / category) # 训练集目录下的全部文件(正负)
  • random.Random(1337).shuffle(files) # 随机打乱数据
  • num_val_samples = int(0.2*len(files)) # 20%
  • val_files = files[-num_val_samples:] # 倒序切片 [-n:]
  • for fname in val_files: # 对文件遍历:将train_dir中的文件一定到val_dir中
  • shutil.move(train_dir / category / fname, val_dir / category / fname)
生成DataSet对象

使用text_dataset_from_directory来生成数据集

In [16]:

  • from tensorflow import keras
  • batch_size = 32
  • train_ds = keras.utils.text_dataset_from_directory("aclImdb/train", batch_size=batch_size)
  • val_ds = keras.utils.text_dataset_from_directory("aclImdb/val", batch_size=batch_size)
  • test_ds = keras.utils.text_dataset_from_directory("aclImdb/test", batch_size=batch_size)
  • Found 12800 files belonging to 2 classes.
  • Found 3200 files belonging to 2 classes.
  • Found 25000 files belonging to 2 classes.

运行代码输出的内容是:找到2个类别的20000个文件

数据集的输入是TensorFlow tf.string张量,生成的目标是int32格式的张量,取值是0或者1.

In [17]:

  • # 显示第一个批量的数据集形状和类型
  • for inputs, targets in train_ds:
  • print("inputs_shape", inputs.shape)
  • print("inputs_dtype", inputs.dtype)
  • print("targets.shape", targets.shape)
  • print("targets.dtype", targets.dtype)
  • print("inputs[0]", inputs[0])
  • print("targets[0]", targets[0])
将单词作为集合处理:词袋方法

对文本编码的简单方法:舍弃顺序,将文本看做是一组(一袋)词元。既可以看做是单个词元,也可以看做是连续的一组词元(N元语法)

单个词元的二进制编码

将整个文本看做是单一向量,其中每个元素表示某个单词是否存在。

基于二进制的编码将文本编码为一个向量,向量维数等于词表中的单词个数。

向量中的所有元素几乎为0,存在的元素才是1。

基于一元语法:用TextVectorization层预处理数据

In [18]:

  • text_vectorization = TextVectorization(
  • max_tokens=20000,
  • output_mode="multi_hot", # 重点:二进制编码
  • )

In [19]:

  • # 准备数据集,仅包含文本输入,不包含标签
  • text_only_train_ds = train_ds.map(lambda x,y: x)
  • text_vectorization.adapt(text_only_train_ds)

In [20]:

  • binary_lgram_train_ds = train_ds.map(lambda x,y: (text_vectorization(x),y),num_parallel_calls=4)
  • binary_lgram_val_ds = val_ds.map(lambda x,y: (text_vectorization(x),y),num_parallel_calls=4)
  • binary_lgram_test_ds = test_ds.map(lambda x,y: (text_vectorization(x),y),num_parallel_calls=4)

In [21]:

  • # 查看一元语法二进制编码后的数据集的输出
  • for inputs, targets in binary_lgram_train_ds:
  • print("inputs_shape", inputs.shape)
  • print("inputs_dtype", inputs.dtype)
  • print("targets.shape", targets.shape)
  • print("targets.dtype", targets.dtype)
  • print("inputs[0]", inputs[0])
  • print("targets[0]", targets[0])
构建网络模型(复用)

本章节中复用此模型

In [22]:

  • from tensorflow import keras
  • from tensorflow.keras import layers
  • def get_model(max_token=20000, hidden_dim=16):
  • inputs = keras.Input(shape=(max_token,)) # 输入层
  • x = layers.Dense(hidden_dim, activation="relu")(inputs) # 隐藏层
  • x = layers.Dropout(0.5)(x) # dropout层,防止过拟合
  • outputs = layers.Dense(1, activation="sigmoid")(x) # 输出层
  • model = keras.Model(inputs, outputs) # Model实例化
  • model.compile(optimizer="rmsprop",loss="binary_crossentropy",metrics=["accuracy"]) # 编译模型
  • return model
模型训练和测试

In [23]:

  • model = get_model()
  • model.summary()
  • Model: "model"
  • _________________________________________________________________
  • Layer (type) Output Shape Param #
  • =================================================================
  • input_1 (InputLayer) [(None, 20000)] 0
  • dense (Dense) (None, 16) 320016
  • dropout (Dropout) (None, 16) 0
  • dense_1 (Dense) (None, 1) 17
  • =================================================================
  • Total params: 320,033
  • Trainable params: 320,033
  • Non-trainable params: 0
  • _________________________________________________________________

In [24]:

  • callbacks = [keras.callbacks.ModelCheckpoint("binary_lgram_keras",
  • save_best_only=True)]
  • model.fit(binary_lgram_train_ds.cache(),
  • validation_data=binary_lgram_val_ds.cache(),
  • epochs=10,
  • callbacks=callbacks
  • )
  • model = keras.models.load_model("binary_lgram_keras")
  • print(f'Test acc', model.evaluate(binary_lgram_test_ds))
  • Epoch 1/10
  • 392/400 [============================>.] - ETA: 0s - loss: 0.4510 - accuracy: 0.7995INFO:tensorflow:Assets written to: binary_lgram_keras/assets
  • 400/400 [==============================] - 7s 14ms/step - loss: 0.4488 - accuracy: 0.8008 - val_loss: 0.3165 - val_accuracy: 0.8806
  • Epoch 2/10
  • 398/400 [============================>.] - ETA: 0s - loss: 0.2740 - accuracy: 0.8956INFO:tensorflow:Assets written to: binary_lgram_keras/assets
  • 400/400 [==============================] - 4s 10ms/step - loss: 0.2743 - accuracy: 0.8952 - val_loss: 0.2996 - val_accuracy: 0.8834
  • Epoch 3/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2313 - accuracy: 0.9175 - val_loss: 0.3097 - val_accuracy: 0.8869
  • Epoch 4/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2019 - accuracy: 0.9303 - val_loss: 0.3240 - val_accuracy: 0.8875
  • Epoch 5/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1885 - accuracy: 0.9398 - val_loss: 0.3431 - val_accuracy: 0.8831
  • Epoch 6/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1763 - accuracy: 0.9412 - val_loss: 0.3683 - val_accuracy: 0.8838
  • Epoch 7/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1740 - accuracy: 0.9477 - val_loss: 0.3835 - val_accuracy: 0.8841
  • Epoch 8/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1541 - accuracy: 0.9491 - val_loss: 0.4029 - val_accuracy: 0.8853
  • Epoch 9/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1664 - accuracy: 0.9514 - val_loss: 0.4074 - val_accuracy: 0.8819
  • Epoch 10/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1521 - accuracy: 0.9532 - val_loss: 0.4303 - val_accuracy: 0.8831
  • 782/782 [==============================] - 6s 7ms/step - loss: 0.2969 - accuracy: 0.8810
  • Test acc [0.2969053089618683, 0.8809599876403809]
基于二元语法的二进制编码
返回二元语法

TextVectorization层能够返回任意N元语法,通过参数设置ngrams=N

In [25]:

  • # 返回二元语法
  • text_vectorization = TextVectorization(ngrams=2,
  • max_tokens=20000,
  • output_mode="multi_hot",
  • )
模型训练和测试

In [26]:

  • text_vectorization.adapt(text_only_train_ds)
  • binary_2gram_train_ds = train_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • binary_2gram_val_ds = val_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • binary_2gram_test_ds = test_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • # 模型实例化
  • model = get_model()
  • model.summary()
  • callbacks = [keras.callbacks.ModelCheckpoint("binary_2gram_keras",
  • save_best_only=True)]
  • model.fit(binary_2gram_train_ds.cache(),
  • validation_data=binary_2gram_val_ds.cache(),
  • epochs=10,
  • callbacks=callbacks
  • )
  • model = keras.models.load_model("binary_2gram_keras")
  • print(f'Test acc', model.evaluate(binary_2gram_test_ds))
  • Model: "model_1"
  • _________________________________________________________________
  • Layer (type) Output Shape Param #
  • =================================================================
  • input_2 (InputLayer) [(None, 20000)] 0
  • dense_2 (Dense) (None, 16) 320016
  • dropout_1 (Dropout) (None, 16) 0
  • dense_3 (Dense) (None, 1) 17
  • =================================================================
  • Total params: 320,033
  • Trainable params: 320,033
  • Non-trainable params: 0
  • _________________________________________________________________
  • Epoch 1/10
  • 398/400 [============================>.] - ETA: 0s - loss: 0.4216 - accuracy: 0.8215INFO:tensorflow:Assets written to: binary_2gram_keras/assets
  • 400/400 [==============================] - 7s 15ms/step - loss: 0.4211 - accuracy: 0.8220 - val_loss: 0.2985 - val_accuracy: 0.8891
  • Epoch 2/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2421 - accuracy: 0.9115 - val_loss: 0.2988 - val_accuracy: 0.8888
  • Epoch 3/10
  • 400/400 [==============================] - 3s 8ms/step - loss: 0.1938 - accuracy: 0.9348 - val_loss: 0.3240 - val_accuracy: 0.8913
  • Epoch 4/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1696 - accuracy: 0.9445 - val_loss: 0.3459 - val_accuracy: 0.8881
  • Epoch 5/10
  • 400/400 [==============================] - 2s 6ms/step - loss: 0.1477 - accuracy: 0.9542 - val_loss: 0.3751 - val_accuracy: 0.8894
  • Epoch 6/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1381 - accuracy: 0.9601 - val_loss: 0.4036 - val_accuracy: 0.8872
  • Epoch 7/10
  • 400/400 [==============================] - 2s 6ms/step - loss: 0.1362 - accuracy: 0.9623 - val_loss: 0.4186 - val_accuracy: 0.8891
  • Epoch 8/10
  • 400/400 [==============================] - 2s 6ms/step - loss: 0.1336 - accuracy: 0.9640 - val_loss: 0.4406 - val_accuracy: 0.8863
  • Epoch 9/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1357 - accuracy: 0.9641 - val_loss: 0.4575 - val_accuracy: 0.8881
  • Epoch 10/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1286 - accuracy: 0.9663 - val_loss: 0.4638 - val_accuracy: 0.8884
  • 782/782 [==============================] - 5s 6ms/step - loss: 0.2848 - accuracy: 0.8918
  • Test acc [0.28478434681892395, 0.8918399810791016]

我们发现,使用二元语法后精度达到了89.2%,而是用一元语法精度仅为87.8%;效果还是蛮好的

二元语法的TF-IDF的编码
基本思想

TextVectorizatio层还可以是基于计算每个单词或者每个N元语法的出现次数,统计文本的直方图

  • # 二元语法的出现次数
  • text_vectorization = TextVectorization(ngrams=2,
  • max_tokens=20000,
  • output_mode="count")

上述处理的缺陷:有些单词,比如the``a等肯定高频出现,但是对于建模无用,怎么处理?

解决方法:规范化,将单词计数减去均值除以方差。使用TF-IDF最好:词频-逆文档频次

  • text_vectorization = TextVectorization(ngrams=2,
  • max_token=20000,
  • output_mode="tf-idf")

TF-IDF的思想:某个单词在一个文档(当前文档)中出现的次数很重要;在全部文档中出现的频次也很重要。如果一个词语几乎在每个文档都出现的话,比如the、a等,那么它就不重要了。TF-IDF就是综合考虑了这两种思想。

TF:词频数,一篇文章中的词语出现的总次数,计算公式为:

某个词语在文章中出现的总次数文章的总词数

IDF:逆文档频率,需要一个语料库来支撑模型的环境,计算公式为:

预料库的文档总数包含该词语的文档数

  • def tfidf(term, document,dataset):
  • term_freq = document.count(term)
  • doc_freq = math.log(sum(doc.count(term) for doc in dataset) + 1)
  • return term_freq / doc_freq
基于TF-IDF的模型训练

In [27]:

  • text_vectorization = TextVectorization(
  • ngrams=2,
  • max_tokens=20000,
  • output_mode="tf-idf" # 选择输出模式
  • )

In [28]:

  • text_vectorization.adapt(text_only_train_ds)
  • tfidf_2gram_train_ds = train_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • tfidf_2gram_val_ds = val_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • tfidf_2gram_test_ds = test_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • # 模型实例化
  • model = get_model()
  • model.summary()
  • callbacks = [keras.callbacks.ModelCheckpoint("tfidf_2gram_keras",
  • save_best_only=True)]
  • model.fit(tfidf_2gram_train_ds.cache(),
  • validation_data=tfidf_2gram_val_ds.cache(),
  • epochs=10,
  • callbacks=callbacks
  • )
  • model = keras.models.load_model("tfidf_2gram_keras")
  • print(f'Test acc', model.evaluate(tfidf_2gram_test_ds))
  • Model: "model_2"
  • _________________________________________________________________
  • Layer (type) Output Shape Param #
  • =================================================================
  • input_3 (InputLayer) [(None, 20000)] 0
  • dense_4 (Dense) (None, 16) 320016
  • dropout_2 (Dropout) (None, 16) 0
  • dense_5 (Dense) (None, 1) 17
  • =================================================================
  • Total params: 320,033
  • Trainable params: 320,033
  • Non-trainable params: 0
  • _________________________________________________________________
  • Epoch 1/10
  • 396/400 [============================>.] - ETA: 0s - loss: 0.5398 - accuracy: 0.7569INFO:tensorflow:Assets written to: tfidf_2gram_keras/assets
  • 400/400 [==============================] - 10s 21ms/step - loss: 0.5393 - accuracy: 0.7577 - val_loss: 0.3512 - val_accuracy: 0.8644
  • Epoch 2/10
  • 398/400 [============================>.] - ETA: 0s - loss: 0.3277 - accuracy: 0.8609INFO:tensorflow:Assets written to: tfidf_2gram_keras/assets
  • 400/400 [==============================] - 4s 9ms/step - loss: 0.3288 - accuracy: 0.8603 - val_loss: 0.3308 - val_accuracy: 0.8775
  • Epoch 3/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2839 - accuracy: 0.8780 - val_loss: 0.3535 - val_accuracy: 0.8856
  • Epoch 4/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2462 - accuracy: 0.8916 - val_loss: 0.3800 - val_accuracy: 0.8772
  • Epoch 5/10
  • 400/400 [==============================] - 3s 6ms/step - loss: 0.2380 - accuracy: 0.8948 - val_loss: 0.4089 - val_accuracy: 0.8712
  • Epoch 6/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2129 - accuracy: 0.9093 - val_loss: 0.4162 - val_accuracy: 0.8863
  • Epoch 7/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.2116 - accuracy: 0.9071 - val_loss: 0.4390 - val_accuracy: 0.8744
  • Epoch 8/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1900 - accuracy: 0.9180 - val_loss: 0.4753 - val_accuracy: 0.8794
  • Epoch 9/10
  • 400/400 [==============================] - 3s 7ms/step - loss: 0.1894 - accuracy: 0.9192 - val_loss: 0.4709 - val_accuracy: 0.8766
  • Epoch 10/10
  • 400/400 [==============================] - 3s 8ms/step - loss: 0.1878 - accuracy: 0.9184 - val_loss: 0.5033 - val_accuracy: 0.8706
  • 782/782 [==============================] - 6s 6ms/step - loss: 0.3094 - accuracy: 0.8807
  • Test acc [0.30939018726348877, 0.8807200193405151]
将单词作为序列处理:序列模型方法

深度学习的历史就是逐渐摆脱手动特征工程,让模型仅仅通过数据自己就能学习特征。

序列模型就是非手动寻找基于顺序的特征,而是让模型直接观察原始单词序列的顺序并自己找出这样的特征。

要想实现序列模型:

  • 将输入样本表示为整数索引序列,每个整数代表一个单词
  • 将每个整数映射为一个向量,得到向量序列
  • 将向量序列输入层进行堆叠;这些层可以将相邻向量的特征交叉关联
准备序列模型数据

In [32]:

  • # 准备序列模型数据
  • from tensorflow.keras import layers
  • max_length = 600 # 在600个单词处阶段
  • max_tokens = 20000 #
  • text_vectorization = layers.TextVectorization( # 向量化
  • max_tokens=max_tokens,
  • output_mode="int",
  • output_sequence_length=max_length,
  • )
  • text_vectorization.adapt(text_only_train_ds)
  • int_train_ds = train_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • int_val_ds = val_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
  • int_test_ds = test_ds.map(
  • lambda x,y: (text_vectorization(x),y),
  • num_parallel_calls=4)
构建基于One-hot编码的序列模型

In [33]:

  • import tensorflow as tf
  • inputs = keras.Input(shape=(None,), dtype="int64")
  • embedded = tf.one_hot(inputs, depth=max_tokens) # 编码为20000维的二进制向量
  • x = layers.Bidirectional(layers.LSTM(32))(embedded) # 添加一个双向的LSTM
  • x = layers.Dropout(0.5)(x)
  • outputs = layers.Dense(1, activation="sigmoid")(x) # 最后一层是分类器
  • model = keras.Model(inputs, outputs)
  • model.compile(optimizer="rmsprop",
  • loss="binary_crossentropy",
  • metrics=["accuracy"]
  • )
  • model.summary()
  • Model: "model_4"
  • _________________________________________________________________
  • Layer (type) Output Shape Param #
  • =================================================================
  • input_5 (InputLayer) [(None, None)] 0
  • tf.one_hot_1 (TFOpLambda) (None, None, 20000) 0
  • bidirectional_1 (Bidirectio (None, 64) 5128448
  • nal)
  • dropout_4 (Dropout) (None, 64) 0
  • dense_7 (Dense) (None, 1) 65
  • =================================================================
  • Total params: 5,128,513
  • Trainable params: 5,128,513
  • Non-trainable params: 0
  • _________________________________________________________________
训练序列模型

In [*]:

  • callbacks = [ # 回调函数
  • keras.callbacks.ModelCheckpoint("ont_hot_bidir_lstm.keras",
  • save_best_only=True
  • )]
  • model.fit(int_train_ds, # 模型训练
  • validation_data=int_val_ds,
  • epochs=10,
  • callbacks=callbacks
  • )
  • model = keras.models.load_model("one_hot_bidir_lstm.keras") # 直接调用模型

这个模型在这里运行的很慢,输入很大:每个样本被编码成(600,20000)的矩阵(电脑运行部分截图)

城东书院 www.cdsy.xyz
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐