2025年3月28日 星期五 甲辰(龙)年 月廿七 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > 人工智能

[AI教程]TensorFlow入门:手势数字识别

时间:04-17来源:作者:点击数:48

实验说明

本实验为吴恩达课后编程作业第二课第三周内容,通过引导我们将完成一个深度学习框架,使我们可以更轻松地构建神经网络。编程框架不仅可以缩短编码时间,而且有时还可以执行加速代码的优化。

数据集下载地址:[https://github.com/stormstone/deeplearning.ai/tree/c38b8ea7cc7fef5caf88be6e06f4e3452690fde7]

工具:Jupyter Notebook (tensorflow) + Python 3.6.3

问题陈述:一天下午,我和一些朋友决定教我们的电脑破译手语。 我们花了几个小时在白墙前拍照,想出了以下数据集。 现在,您的工作是构建一种算法,以促进从语言障碍者到不懂手语的人的通信。

训练集:1080个图像(64乘64像素)的符号表示从0到5的数字(每个数字180个图像)。

测试集:120张图片(64乘64像素)的符号,表示从0到5的数字(每个数字20张图片)。

以下是每个数字的示例,以及如何解释我们如何表示标签。 在我们将图像重新降低到64 x 64像素之前,这些是原始图片。

在这里插入图片描述

1、Exploring the Tensorflow Library

1.1 首先导入库:
  • import math
  • import numpy as np
  • import h5py
  • import matplotlib.pyplot as plt
  • import tensorflow as tf
  • from tensorflow.python.framework import ops
  • from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict
  • %matplotlib inline
  • np.random.seed(1)
1.2 加载数据集:
  • X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
  • print(X_train_orig.shape)
  • print(Y_train_orig.shape)
  • print(X_test_orig.shape)
  • print(Y_test_orig.shape)

运行结果展示:

在这里插入图片描述
1.3 图片示例
  • index = 2
  • plt.imshow(X_train_orig[index])
  • print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

运行结果展示:

在这里插入图片描述
1.4 输出数据集信息
  • # Flatten the training and test images
  • X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
  • X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
  • # Normalize image vectors
  • X_train = X_train_flatten/255.
  • X_test = X_test_flatten/255.
  • # Convert training and test labels to one hot matrices
  • Y_train = convert_to_one_hot(Y_train_orig, 6)
  • Y_test = convert_to_one_hot(Y_test_orig, 6)
  • print ("number of training examples = " + str(X_train.shape[1]))
  • print ("number of test examples = " + str(X_test.shape[1]))
  • print ("X_train shape: " + str(X_train.shape))
  • print ("Y_train shape: " + str(Y_train.shape))
  • print ("X_test shape: " + str(X_test.shape))
  • print ("Y_test shape: " + str(Y_test.shape))
  • print(Y_test_orig[0][9])
  • print(Y_test_orig[0][8])
  • print(Y_test_orig[0][7])
  • print(Y_test_orig[0][6])
  • print(Y_test_orig[0][5])
  • print(Y_test_orig[0][4])

运行结果:

在这里插入图片描述

2.1 - Create placeholders

  • # GRADED FUNCTION: create_placeholders
  • def create_placeholders(n_x, n_y):
  • """
  • Creates the placeholders for the tensorflow session.
  • Arguments:
  • n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)
  • n_y -- scalar, number of classes (from 0 to 5, so -> 6)
  • Returns:
  • X -- placeholder for the data input, of shape [n_x, None] and dtype "float"
  • Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float"
  • Tips:
  • - You will use None because it let's us be flexible on the number of examples you will for the placeholders.
  • In fact, the number of examples during test/train is different.
  • """
  • ### START CODE HERE ### (approx. 2 lines)
  • X = tf.placeholder(dtype = tf.float32, shape = [n_x, None])
  • Y = tf.placeholder(dtype = tf.float32, shape = [n_y, None])
  • ### END CODE HERE ###
  • return X, Y
  • X, Y = create_placeholders(12288, 6)
  • print ("X = " + str(X))
  • print ("Y = " + str(Y))

运行结果:

在这里插入图片描述

2.2 - Initializing the parameters

  • # GRADED FUNCTION: initialize_parameters
  • def initialize_parameters():
  • """
  • Initializes parameters to build a neural network with tensorflow. The shapes are:
  • W1 : [25, 12288]
  • b1 : [25, 1]
  • W2 : [12, 25]
  • b2 : [12, 1]
  • W3 : [6, 12]
  • b3 : [6, 1]
  • Returns:
  • parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
  • """
  • tf.set_random_seed(1) # so that your "random" numbers match ours
  • ### START CODE HERE ### (approx. 6 lines of code)
  • W1 = tf.get_variable("W1", [25, 12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
  • b1 = tf.get_variable("b1", [25, 1], initializer = tf.zeros_initializer())
  • W2 = tf.get_variable("W2", [12, 25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
  • b2 = tf.get_variable("b2", [12, 1], initializer = tf.zeros_initializer())
  • W3 = tf.get_variable("W3", [6, 12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
  • b3 = tf.get_variable("b3", [6, 1], initializer = tf.zeros_initializer())
  • ### END CODE HERE ###
  • parameters = {"W1": W1,
  • "b1": b1,
  • "W2": W2,
  • "b2": b2,
  • "W3": W3,
  • "b3": b3}
  • return parameters
  • tf.reset_default_graph()
  • with tf.Session() as sess:
  • parameters = initialize_parameters()
  • print("W1 = " + str(parameters["W1"]))
  • print("b1 = " + str(parameters["b1"]))
  • print("W2 = " + str(parameters["W2"]))
  • print("b2 = " + str(parameters["b2"]))

运行结果:

在这里插入图片描述

2.3 - Forward propagation in tensorflow

  • # GRADED FUNCTION: forward_propagation
  • def forward_propagation(X, parameters):
  • """
  • Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
  • Arguments:
  • X -- input dataset placeholder, of shape (input size, number of examples)
  • parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
  • the shapes are given in initialize_parameters
  • Returns:
  • Z3 -- the output of the last LINEAR unit
  • """
  • # Retrieve the parameters from the dictionary "parameters"
  • W1 = parameters['W1']
  • b1 = parameters['b1']
  • W2 = parameters['W2']
  • b2 = parameters['b2']
  • W3 = parameters['W3']
  • b3 = parameters['b3']
  • ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:
  • Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
  • A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
  • Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2
  • A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
  • Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3
  • ### END CODE HERE ###
  • return Z3
  • tf.reset_default_graph()
  • with tf.Session() as sess:
  • X, Y = create_placeholders(12288, 6)
  • parameters = initialize_parameters()
  • Z3 = forward_propagation(X, parameters)
  • print("Z3 = " + str(Z3))

运行结果:

在这里插入图片描述

2.4 Compute cost

  • # GRADED FUNCTION: compute_cost
  • def compute_cost(Z3, Y):
  • """
  • Computes the cost
  • Arguments:
  • Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
  • Y -- "true" labels vector placeholder, same shape as Z3
  • Returns:
  • cost - Tensor of the cost function
  • """
  • # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...)
  • logits = tf.transpose(Z3)
  • labels = tf.transpose(Y)
  • ### START CODE HERE ### (1 line of code)
  • cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))
  • ### END CODE HERE ###
  • return cost
  • tf.reset_default_graph()
  • with tf.Session() as sess:
  • X, Y = create_placeholders(12288, 6)
  • parameters = initialize_parameters()
  • Z3 = forward_propagation(X, parameters)
  • cost = compute_cost(Z3, Y)
  • print("cost = " + str(cost))

运行结果:

在这里插入图片描述

2.5 - Building the model

  • def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
  • num_epochs = 1500, minibatch_size = 32, print_cost = True):
  • """
  • Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
  • Arguments:
  • X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
  • Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
  • X_test -- training set, of shape (input size = 12288, number of training examples = 120)
  • Y_test -- test set, of shape (output size = 6, number of test examples = 120)
  • learning_rate -- learning rate of the optimization
  • num_epochs -- number of epochs of the optimization loop
  • minibatch_size -- size of a minibatch
  • print_cost -- True to print the cost every 100 epochs
  • Returns:
  • parameters -- parameters learnt by the model. They can then be used to predict.
  • """
  • ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
  • tf.set_random_seed(1) # to keep consistent results
  • seed = 3 # to keep consistent results
  • (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
  • n_y = Y_train.shape[0] # n_y : output size
  • costs = [] # To keep track of the cost
  • # Create Placeholders of shape (n_x, n_y)
  • ### START CODE HERE ### (1 line)
  • X, Y = create_placeholders(n_x, n_y)
  • ### END CODE HERE ###
  • # Initialize parameters
  • ### START CODE HERE ### (1 line)
  • parameters = initialize_parameters()
  • ### END CODE HERE ###
  • # Forward propagation: Build the forward propagation in the tensorflow graph
  • ### START CODE HERE ### (1 line)
  • Z3 = forward_propagation(X, parameters)
  • ### END CODE HERE ###
  • # Cost function: Add cost function to tensorflow graph
  • ### START CODE HERE ### (1 line)
  • cost = compute_cost(Z3, Y)
  • ### END CODE HERE ###
  • # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
  • ### START CODE HERE ### (1 line)
  • optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
  • ### END CODE HERE ###
  • # Initialize all the variables
  • init = tf.global_variables_initializer()
  • # Start the session to compute the tensorflow graph
  • with tf.Session() as sess:
  • # Run the initialization
  • sess.run(init)
  • # Do the training loop
  • for epoch in range(num_epochs):
  • epoch_cost = 0. # Defines a cost related to an epoch
  • num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
  • seed = seed + 1
  • minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
  • for minibatch in minibatches:
  • # Select a minibatch
  • (minibatch_X, minibatch_Y) = minibatch
  • # IMPORTANT: The line that runs the graph on a minibatch.
  • # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
  • ### START CODE HERE ### (1 line)
  • _ , minibatch_cost = sess.run([optimizer, cost], feed_dict = {X : minibatch_X, Y : minibatch_Y})
  • ### END CODE HERE ###
  • epoch_cost += minibatch_cost / num_minibatches
  • # Print the cost every epoch
  • if print_cost == True and epoch % 100 == 0:
  • print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
  • if print_cost == True and epoch % 5 == 0:
  • costs.append(epoch_cost)
  • # plot the cost
  • plt.plot(np.squeeze(costs))
  • plt.ylabel('cost')
  • plt.xlabel('iterations (per tens)')
  • plt.title("Learning rate =" + str(learning_rate))
  • plt.show()
  • # lets save the parameters in a variable
  • parameters = sess.run(parameters)
  • print ("Parameters have been trained!")
  • # Calculate the correct predictions
  • correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))
  • # Calculate accuracy on the test set
  • accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  • print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
  • print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
  • return parameters
  • parameters = model(X_train, Y_train, X_test, Y_test)

运行结果:

在这里插入图片描述

2.6 - Test with your own image (optional / ungraded exercise)

恭喜你完成了这项任务。 现在你可以拍摄手的图片并查看模型的输出。 要做到这一点:

1.拍摄手势图片。

2.将图像添加到此代码运行目录中的images文件夹内。

3.在以下代码中写下该图像名称(此处照片名字为:thumbs_up.jpg)。

4.运行代码并检查算法是否正确!

  • import scipy
  • from PIL import Image
  • from scipy import ndimage
  • ## START CODE HERE ## (PUT YOUR IMAGE NAME)
  • my_image = "thumbs_up.jpg"
  • ## END CODE HERE ##
  • # We preprocess your image to fit your algorithm.
  • fname = "images/" + my_image
  • image = np.array(ndimage.imread(fname, flatten=False))
  • my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T
  • my_image_prediction = predict(my_image, parameters)
  • plt.imshow(image)
  • print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction)))

运行结果:

在这里插入图片描述
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门