本实验为吴恩达课后编程作业第二课第三周内容,通过引导我们将完成一个深度学习框架,使我们可以更轻松地构建神经网络。编程框架不仅可以缩短编码时间,而且有时还可以执行加速代码的优化。
数据集下载地址:[https://github.com/stormstone/deeplearning.ai/tree/c38b8ea7cc7fef5caf88be6e06f4e3452690fde7]
工具:Jupyter Notebook (tensorflow) + Python 3.6.3
问题陈述:一天下午,我和一些朋友决定教我们的电脑破译手语。 我们花了几个小时在白墙前拍照,想出了以下数据集。 现在,您的工作是构建一种算法,以促进从语言障碍者到不懂手语的人的通信。
训练集:1080个图像(64乘64像素)的符号表示从0到5的数字(每个数字180个图像)。
测试集:120张图片(64乘64像素)的符号,表示从0到5的数字(每个数字20张图片)。
以下是每个数字的示例,以及如何解释我们如何表示标签。 在我们将图像重新降低到64 x 64像素之前,这些是原始图片。
- import math
- import numpy as np
- import h5py
- import matplotlib.pyplot as plt
- import tensorflow as tf
- from tensorflow.python.framework import ops
- from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict
-
- %matplotlib inline
- np.random.seed(1)
-
- X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
- print(X_train_orig.shape)
- print(Y_train_orig.shape)
- print(X_test_orig.shape)
- print(Y_test_orig.shape)
-
运行结果展示:
- index = 2
- plt.imshow(X_train_orig[index])
- print ("y = " + str(np.squeeze(Y_train_orig[:, index])))
-
运行结果展示:
- # Flatten the training and test images
- X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
- X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
- # Normalize image vectors
- X_train = X_train_flatten/255.
- X_test = X_test_flatten/255.
- # Convert training and test labels to one hot matrices
- Y_train = convert_to_one_hot(Y_train_orig, 6)
- Y_test = convert_to_one_hot(Y_test_orig, 6)
-
- print ("number of training examples = " + str(X_train.shape[1]))
- print ("number of test examples = " + str(X_test.shape[1]))
- print ("X_train shape: " + str(X_train.shape))
- print ("Y_train shape: " + str(Y_train.shape))
- print ("X_test shape: " + str(X_test.shape))
- print ("Y_test shape: " + str(Y_test.shape))
- print(Y_test_orig[0][9])
- print(Y_test_orig[0][8])
- print(Y_test_orig[0][7])
- print(Y_test_orig[0][6])
- print(Y_test_orig[0][5])
- print(Y_test_orig[0][4])
-
运行结果:
- # GRADED FUNCTION: create_placeholders
-
- def create_placeholders(n_x, n_y):
- """
- Creates the placeholders for the tensorflow session.
-
- Arguments:
- n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)
- n_y -- scalar, number of classes (from 0 to 5, so -> 6)
-
- Returns:
- X -- placeholder for the data input, of shape [n_x, None] and dtype "float"
- Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float"
-
- Tips:
- - You will use None because it let's us be flexible on the number of examples you will for the placeholders.
- In fact, the number of examples during test/train is different.
- """
-
- ### START CODE HERE ### (approx. 2 lines)
- X = tf.placeholder(dtype = tf.float32, shape = [n_x, None])
- Y = tf.placeholder(dtype = tf.float32, shape = [n_y, None])
- ### END CODE HERE ###
-
- return X, Y
-
- X, Y = create_placeholders(12288, 6)
- print ("X = " + str(X))
- print ("Y = " + str(Y))
-
运行结果:
- # GRADED FUNCTION: initialize_parameters
-
- def initialize_parameters():
- """
- Initializes parameters to build a neural network with tensorflow. The shapes are:
- W1 : [25, 12288]
- b1 : [25, 1]
- W2 : [12, 25]
- b2 : [12, 1]
- W3 : [6, 12]
- b3 : [6, 1]
-
- Returns:
- parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
- """
-
- tf.set_random_seed(1) # so that your "random" numbers match ours
-
- ### START CODE HERE ### (approx. 6 lines of code)
- W1 = tf.get_variable("W1", [25, 12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
- b1 = tf.get_variable("b1", [25, 1], initializer = tf.zeros_initializer())
- W2 = tf.get_variable("W2", [12, 25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
- b2 = tf.get_variable("b2", [12, 1], initializer = tf.zeros_initializer())
- W3 = tf.get_variable("W3", [6, 12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
- b3 = tf.get_variable("b3", [6, 1], initializer = tf.zeros_initializer())
- ### END CODE HERE ###
-
- parameters = {"W1": W1,
- "b1": b1,
- "W2": W2,
- "b2": b2,
- "W3": W3,
- "b3": b3}
-
- return parameters
-
- tf.reset_default_graph()
- with tf.Session() as sess:
- parameters = initialize_parameters()
- print("W1 = " + str(parameters["W1"]))
- print("b1 = " + str(parameters["b1"]))
- print("W2 = " + str(parameters["W2"]))
- print("b2 = " + str(parameters["b2"]))
-
运行结果:
- # GRADED FUNCTION: forward_propagation
-
- def forward_propagation(X, parameters):
- """
- Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
-
- Arguments:
- X -- input dataset placeholder, of shape (input size, number of examples)
- parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
- the shapes are given in initialize_parameters
-
- Returns:
- Z3 -- the output of the last LINEAR unit
- """
-
- # Retrieve the parameters from the dictionary "parameters"
- W1 = parameters['W1']
- b1 = parameters['b1']
- W2 = parameters['W2']
- b2 = parameters['b2']
- W3 = parameters['W3']
- b3 = parameters['b3']
-
- ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:
- Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1
- A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
- Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2
- A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
- Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3
- ### END CODE HERE ###
-
- return Z3
-
- tf.reset_default_graph()
-
- with tf.Session() as sess:
- X, Y = create_placeholders(12288, 6)
- parameters = initialize_parameters()
- Z3 = forward_propagation(X, parameters)
- print("Z3 = " + str(Z3))
-
运行结果:
- # GRADED FUNCTION: compute_cost
-
- def compute_cost(Z3, Y):
- """
- Computes the cost
-
-
- Arguments:
- Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
- Y -- "true" labels vector placeholder, same shape as Z3
-
- Returns:
- cost - Tensor of the cost function
- """
-
- # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...)
- logits = tf.transpose(Z3)
- labels = tf.transpose(Y)
-
- ### START CODE HERE ### (1 line of code)
- cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))
- ### END CODE HERE ###
-
- return cost
-
- tf.reset_default_graph()
-
- with tf.Session() as sess:
- X, Y = create_placeholders(12288, 6)
- parameters = initialize_parameters()
- Z3 = forward_propagation(X, parameters)
- cost = compute_cost(Z3, Y)
- print("cost = " + str(cost))
-
运行结果:
- def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
- num_epochs = 1500, minibatch_size = 32, print_cost = True):
- """
- Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
-
- Arguments:
- X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
- Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
- X_test -- training set, of shape (input size = 12288, number of training examples = 120)
- Y_test -- test set, of shape (output size = 6, number of test examples = 120)
- learning_rate -- learning rate of the optimization
- num_epochs -- number of epochs of the optimization loop
- minibatch_size -- size of a minibatch
- print_cost -- True to print the cost every 100 epochs
-
- Returns:
- parameters -- parameters learnt by the model. They can then be used to predict.
- """
-
- ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
- tf.set_random_seed(1) # to keep consistent results
- seed = 3 # to keep consistent results
- (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
- n_y = Y_train.shape[0] # n_y : output size
- costs = [] # To keep track of the cost
-
- # Create Placeholders of shape (n_x, n_y)
- ### START CODE HERE ### (1 line)
- X, Y = create_placeholders(n_x, n_y)
- ### END CODE HERE ###
-
- # Initialize parameters
- ### START CODE HERE ### (1 line)
- parameters = initialize_parameters()
- ### END CODE HERE ###
-
- # Forward propagation: Build the forward propagation in the tensorflow graph
- ### START CODE HERE ### (1 line)
- Z3 = forward_propagation(X, parameters)
- ### END CODE HERE ###
-
- # Cost function: Add cost function to tensorflow graph
- ### START CODE HERE ### (1 line)
- cost = compute_cost(Z3, Y)
- ### END CODE HERE ###
-
- # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
- ### START CODE HERE ### (1 line)
- optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
- ### END CODE HERE ###
-
- # Initialize all the variables
- init = tf.global_variables_initializer()
-
- # Start the session to compute the tensorflow graph
- with tf.Session() as sess:
-
- # Run the initialization
- sess.run(init)
-
- # Do the training loop
- for epoch in range(num_epochs):
-
- epoch_cost = 0. # Defines a cost related to an epoch
- num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
- seed = seed + 1
- minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
-
- for minibatch in minibatches:
-
- # Select a minibatch
- (minibatch_X, minibatch_Y) = minibatch
-
- # IMPORTANT: The line that runs the graph on a minibatch.
- # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
- ### START CODE HERE ### (1 line)
- _ , minibatch_cost = sess.run([optimizer, cost], feed_dict = {X : minibatch_X, Y : minibatch_Y})
- ### END CODE HERE ###
-
- epoch_cost += minibatch_cost / num_minibatches
-
- # Print the cost every epoch
- if print_cost == True and epoch % 100 == 0:
- print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
- if print_cost == True and epoch % 5 == 0:
- costs.append(epoch_cost)
-
- # plot the cost
- plt.plot(np.squeeze(costs))
- plt.ylabel('cost')
- plt.xlabel('iterations (per tens)')
- plt.title("Learning rate =" + str(learning_rate))
- plt.show()
-
- # lets save the parameters in a variable
- parameters = sess.run(parameters)
- print ("Parameters have been trained!")
-
- # Calculate the correct predictions
- correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))
-
- # Calculate accuracy on the test set
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
-
- print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
- print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
-
- return parameters
-
- parameters = model(X_train, Y_train, X_test, Y_test)
-
运行结果:
恭喜你完成了这项任务。 现在你可以拍摄手的图片并查看模型的输出。 要做到这一点:
1.拍摄手势图片。
2.将图像添加到此代码运行目录中的images文件夹内。
3.在以下代码中写下该图像名称(此处照片名字为:thumbs_up.jpg)。
4.运行代码并检查算法是否正确!
- import scipy
- from PIL import Image
- from scipy import ndimage
-
- ## START CODE HERE ## (PUT YOUR IMAGE NAME)
- my_image = "thumbs_up.jpg"
- ## END CODE HERE ##
-
- # We preprocess your image to fit your algorithm.
- fname = "images/" + my_image
- image = np.array(ndimage.imread(fname, flatten=False))
- my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T
- my_image_prediction = predict(my_image, parameters)
-
- plt.imshow(image)
- print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction)))
-
运行结果: