简单记个笔记
为什么网络模型有固定的输入维度呢?
计算公式
- # 写网络架构:两种方法
- import torch
- from torch import nn
- from torch.nn import Conv2d,MaxPool2d,Flatten,Linear,Sequential
- # pytorch的nn.module 的时候从使用说明上可以知道其标准输入为 [B, C, H, W]
- # 方法1 直接搭建
- class MyModule(nn.Module):
- def __init__(self):
- # super(MyModule, self).__init__()
- super().__init__()
- self.conv1 = nn.Conv2d(3,32,5,padding=2)
- self.maxpool1 = nn.MaxPool2d(2)
- self.conv2 = nn.Conv2d(32,32,5,padding=2)
- self.maxpool2 = nn.MaxPool2d(2)
- self.conv3 = nn.Conv2d(32, 64, 5, padding= 2)
- self.maxpool3 = nn.MaxPool2d(2)
- self.flatten = nn.Flatten()
- self.Linear1 = nn.Linear(1024,64)
- self.Linear2 = nn.Linear(64, 10)
-
-
- def forward(self,x):
- x = self.conv1(x)
- x = self.maxpool1(x)
- x = self.conv2(x)
- x = self.maxpool2(x)
- x = self.conv3(x)
- x = self.maxpool3(x)
- x = self.flatten(x)
- x = self.Linear1(x)
- x = self.Linear2(x)
- return x
-
- # 方法2 Sequantial
-
- class MyModule2(nn.Module):
- def __init__(self):
- super().__init__()
- self.model1 = Sequential(
- Conv2d(3,32,5,padding=2),
- MaxPool2d(2),
- Conv2d(32,32,5,padding=2),
- nn.MaxPool2d(2),
- Conv2d(32, 64, 5, padding= 2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024,64),
- Linear(64, 10)
- )
-
- def forward(self, x):
- x = self.model1(x)
- return x
-
- mymodule = MyModule()
- mymodule2 = MyModule2()
- print(mymodule) #打印网络
-
- # 测试网络
- input = torch.ones((64,3,32,32))
- print(input)
- output = mymodule2(input) ## 出错 output 是none
- print(output.shape)
- print("over")
-
输出
- MyModule(
- (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
- (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
- (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
- (maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (flatten): Flatten(start_dim=1, end_dim=-1)
- (Linear1): Linear(in_features=1024, out_features=64, bias=True)
- (Linear2): Linear(in_features=64, out_features=10, bias=True)
- )
-