可以借用sklearn中的StratifiedKFold来来实现K折交叉验证,同时根据标签中不同类别占比来进行拆分数据的,从而解决样本不均衡问题。
#!/usr/bin/python3
# -*- coding:utf-8 -*-
"""
@author: xcd
@file: StratifiedKFold-test.py
@time: 2021/1/26 10:14
@desc:
"""
import numpy as np
from sklearn.model_selection import KFold, StratifiedKFold
X = np.array([
[1, 2, 3, 4],
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44],
[51, 52, 53, 54],
[61, 62, 63, 64],
[71, 72, 73, 74]
])
y = np.array([1, 1, 1, 1, 1, 1, 0, 0])
sfolder = StratifiedKFold(n_splits=4, random_state=0, shuffle=True)
folder = KFold(n_splits=4, random_state=0, shuffle=False)
for train, test in sfolder.split(X, y):
print(train, test)
print("-------------------------------")
for train, test in folder.split(X, y):
print(train, test)
for fold, (train_idx, val_idx) in enumerate(sfolder.split(X, y)):
train_set, val_set = X[train_idx], X[val_idx]
跟KFold有明显的对比,StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。
###
Parameters
n_splits : int, default=3
Number of folds. Must be at least 2.
shuffle : boolean, optional
Whether to shuffle each stratification of the data before splitting into batches.
random_state :
int, RandomState instance or None, optional, default=None
If int, random_state is the seed used by the random number generatorIf RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`. Used when ``shuffle`` == True.
###