2025年4月1日 星期二 乙巳(蛇)年 正月初二 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > 安卓(android)开发

Android触摸事件传递机制—源码解读

时间:12-14来源:作者:点击数:3

在做需求开发中,我使用ViewPager嵌套Fragment,而Fragment又嵌套了Recyclerview组件。这样就导致RV滑动与Viewpager滑动事件产生手势冲突的问题。在深入理解Android触摸事件的传递机制后,我解决了这个问题。遂决定写下这篇博客,来深入分析Android触摸事件传递机制涉及到的相关源码。

一、事件类型

  1. MotionEvent.ACTION_DOWN:手指按下屏幕触发。
  2. MotionEvent.ACTION_MOVE:手指在屏幕上移动触发。
  3. MotionEvent.ACTION_UP:手指抬起时触发。
  4. MotionEvent.Action_Cancel:Cancel事件一般跟Up事件的处理是一样的,是由系统代码自己去触发,比如子view的事件被父view给拦截了,之前被分发的子view就会被发送cancel事件,或者用户手指在滑动过程中移出了边界。另外,在有多点触控事件时,还会陆续触发ACTION_POINTER_DOWN、ACTION_POINTER_UP等事件。

二、负责事件分发机制的方法

2.1 分发事件(dispatchTouchEvent)

我们知道当用户触摸到手机屏幕时,最先接收到事件并进行相应处理的应该是最外层的Activity,所以我们来看看Activity中是如何对事件进行分发的。

  • public boolean dispatchTouchEvent(MotionEvent ev) {
  • if (ev.getAction() == MotionEvent.ACTION_DOWN) {
  • onUserInteraction();
  • }
  • if (getWindow().superDispatchTouchEvent(ev)) {
  • return true;
  • }
  • return onTouchEvent(ev);
  • }

从以上代码中我们可以看到调用getWindow().superDispatchTouchEvent(),而这里的getWindow()返回的是Window抽象类,其实就是PhoneWindow类,继承于Window抽象类,然后调用PhoneWindow的superDispatchTouchEvent()

  • @Override
  • public boolean superDispatchTouchEvent(MotionEvent event) {
  • return mDecor.superDispatchTouchEvent(event);
  • }

从superDispatchTouchEvent()方法中可以看到,它又调用了mDecor的superDispatchTouchEvent()方法,再看mDecor的superDispatchTouchEvent()方法

  • public boolean superDispatchTouchEvent(MotionEvent event) {
  • return super.dispatchTouchEvent(event);
  • }

而mDecor其实就是PhoneWindow中的一个内部类DecorView的实例对象,是Activity的Window窗口中最根部的父容器,我们平时在Activity的onCreate()方法中,通过setContentView()给设置的布局容器,都属于mDecor的子View mContentView对象的子view,而DecorView又继承于FrameLayout,FrameLayout又继承于ViewGroup,由此可知,Activity是如何将事件分发到相应的View当中去的:

Activity.dispatchTouchEvent(MotionEvent event) -> PhoneWindow.superDispatchTouchEvent(MotionEvent event) -> DecorView.superDispatchTouchEvent(MotionEvent event) -> FrameLayout.dispatchTouchEvent(MotionEvent event) -> ViewGroup.dispatchTouchEvent(MotionEvent event) -> 再逐级分发到各个ViewGroup/View当中去

所以,我们在继承ViewGroup或其子类复写dispatchTouchEvent时,在方法最后的返回值处,最好别直接写成return true或者return false,而应写成super.dispatchTouchEvent,否则无法对事件继续进行逐级分发,因为在ViewGroup类的dispatchTouchEvent(MotionEvent event)方法中,会对该布局容器内的所有子View进行遍历,然后再进行事件分发。

2.2 拦截事件(onInterceptTouchEvent)

onInterceptTouchEvent(MotionEvent event) 方法只存在于ViewGroup当中,是用来对布局容器内子View的事件进行拦截的,如果父容器View对事件进行了拦截,即return true,则子View不会收到任何事件分发。

2.3 处理消费事件(onTouchEvent)

onTouchEvent(MotionEvent event)方法如果返回true,则表示该事件被当前View给消费掉了,它的父View的onTouchEvent()后续都不会得到调用,而是通过dispatchTouchEvent()逐级向上返回true到Activity;如果没人消费该事件,都返回false,则最终会交给Activity去进行处理。

三、Demo

界面如下:

在这里插入图片描述

屏幕中有ViewGroupA、ViewGroupB、ViewC,依次进行嵌套

源代码如下:

  • <com.android.phc.widgets.ViewGroupA xmlns:android="http://schemas.android.com/apk/res/android"
  • android:id="@+id/viewGroupA"
  • android:layout_width="match_parent"
  • android:layout_height="match_parent"
  • android:orientation="vertical"
  • android:background="@android:color/white">
  • <com.android.phc.widgets.ViewGroupB
  • android:id="@+id/viewGroupB"
  • android:layout_width="match_parent"
  • android:layout_height="match_parent"
  • android:layout_margin="60dp"
  • android:orientation="vertical"
  • android:background="@android:color/holo_blue_dark">
  • <com.android.phc.widgets.ViewC
  • android:layout_width="match_parent"
  • android:layout_height="match_parent"
  • android:layout_margin="60dp"
  • android:background="@android:color/holo_green_dark" />
  • </com.android.phc.widgets.ViewGroupB>
  • </com.android.phc.widgets.ViewGroupA>
  • public class ViewGroupA extends LinearLayout {
  • public ViewGroupA(Context context) {
  • super(context);
  • }
  • public ViewGroupA(Context context, AttributeSet attrs) {
  • super(context, attrs);
  • }
  • public ViewGroupA(Context context, AttributeSet attrs, int defStyleAttr) {
  • super(context, attrs, defStyleAttr);
  • }
  • @Override
  • public boolean onInterceptTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " onInterceptTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.onInterceptTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " onInterceptTouchEvent return super.onInterceptTouchEvent(ev)=" + result);
  • return result;
  • }
  • @Override
  • public boolean dispatchTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " dispatchTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.dispatchTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " dispatchTouchEvent return super.dispatchTouchEvent(ev)= " + result);
  • return result;
  • }
  • @Override
  • public boolean onTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " onTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.onTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " onTouchEvent return super.onTouchEvent(ev)=" + result);
  • return result;
  • }
  • }
  • public class ViewGroupB extends LinearLayout {
  • public ViewGroupB(Context context) {
  • super(context);
  • }
  • public ViewGroupB(Context context, AttributeSet attrs) {
  • super(context, attrs);
  • }
  • public ViewGroupB(Context context, AttributeSet attrs, int defStyleAttr) {
  • super(context, attrs, defStyleAttr);
  • }
  • @Override
  • public boolean onInterceptTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " onInterceptTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.onInterceptTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " onInterceptTouchEvent return super.onInterceptTouchEvent(ev)=" + result);
  • return result;
  • }
  • @Override
  • public boolean dispatchTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " dispatchTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.dispatchTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " dispatchTouchEvent return super.dispatchTouchEvent(ev)= " + result);
  • return result;
  • }
  • @Override
  • public boolean onTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " onTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.onTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " onTouchEvent return super.onTouchEvent(ev)=" + result);
  • return result;
  • }
  • }
  • public class ViewC extends View {
  • public ViewC(Context context) {
  • super(context);
  • }
  • public ViewC(Context context, AttributeSet attrs) {
  • super(context, attrs);
  • }
  • public ViewC(Context context, AttributeSet attrs, int defStyleAttr) {
  • super(context, attrs, defStyleAttr);
  • }
  • @Override
  • public boolean dispatchTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " dispatchTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.dispatchTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " dispatchTouchEvent return super.dispatchTouchEvent(ev)= " + result);
  • return result;
  • }
  • @Override
  • public boolean onTouchEvent(MotionEvent ev) {
  • Log.d("phc", this.getClass().getSimpleName() + " onTouchEvent -> " + ViewUtils.actionToString(ev.getAction()));
  • boolean result = super.onTouchEvent(ev);
  • Log.d("phc", this.getClass().getSimpleName() + " onTouchEvent return super.onTouchEvent(ev)=" + result);
  • return result;
  • }
  • }
3.1 ViewGroupA、ViewGroupB、ViewC都没有消费事件
在这里插入图片描述

由图中log可以看出,如果没有任何view消费事件的话,事件的传递顺序如下:

ViewGroupA.dispatchTouchEvent -> ViewGroupA.onInterceptTouchEvent(return false, 没有进行拦截) -> ViewGroupB.dispatchTouchEvent -> ViewGroupB.onInterceptTouchEvent(return false, 没有进行拦截) -> ViewC.dispatchTouchEvent -> ViewC.onTouchEvent(return false, 没有消费) -> ViewC.dispatchTouchEvent(return false, 将onTouchEvent的处理结果回传给ViewGroupB) -> ViewGroupB.onTouchEvent(return false, 也没有消费) -> ViewB.dispatchTouchEvent(return false, 将onTouchEvent的处理结果回传给ViewGroupA) -> ViewGroupA.onTouchEvent(return false, 也没有消费) -> ViewA.dispatchTouchEvent(return false, 最终将onTouchEvent的处理结果回传给Activity) -> Activity对事件进行最终处理

看到这里大伙可能会有些疑问,怎么就只有Down事件,而没有后续的Move、Up等事件,这是因为没有任何子View消费Down事件,Down事件最终被最外层的Activity给处理掉了,所以后续的所有Move、Up等事件都不会再分发给子View了,这里在后面的源码分析时会提到。

3.2 ViewC消费了事件
在这里插入图片描述

由图中的log可以看出,一旦ViewC消费了Down事件,它的父容器ViewGroupB,祖父容器ViewGroupA的onTouchEvent都不会被调用了,而是直接通过dispatchTouchEvent将Down以及后续的Move、Up事件的处理结果返回至Activity。

3.3 仅点击ViewGroupB,让ViewGroupB消费事件
在这里插入图片描述

从图中log可以看出,如果点击ViewGroupB,事件根本就不会传递到ViewC,ViewGroupB在消费了Down事件之后,再直接由父容器ViewGroupA的dispatchTouchEvent将ViewGroupB的onTouchEvent处理结果true回传给Activity,接下来后续的Move、 Up事件都只会传递至ViewGroupB,而不会分发给ViewC。

3.4 让ViewGroupB对事件进行拦截
在这里插入图片描述

从图中log可以看出,如果ViewGroupB的onInterceptTouchEvent 返回true,对子view的事件进行拦截,则ViewC不会收到任何的点击事件,事件流变成了ViewGroupA -->ViewGroupB --> ViewGroupA,而没有经过ViewC

通过上述几种情景,我们可以大致了解:

ViewGroupA的dispatchTouchEvent最先被调用,主要负责事件分发,然后会调用其onInterceptTouchEvent,如果返回true,则后续的ViewGroupB、ViewC都不会收到任何的点击事件,相反如果返回false,就放弃拦截事件, 接着会遍历调用子View的dispatchTouchEvent方法将事件分发给ViewGroupB,如果ViewGroupB也没有拦截事件,则又会遍历调用子View的dispatchTouchEvent方法将事件分发给ViewC,如果ViewC在onTouchEvent中消费了事件返回true, 则会将true通过dispatchTouchEvent方法逐级返回给其父容器直至Activity中,而且不会调用各个父容器对应的onTouchEvent方法,如果子View在onTouchEvent中没消费事件返回false,则通过dispatchTouchEvent方法将false返回给ViewGroupB, ViewGroupB就知道子View没有消费事件,就会调用自己的onTouchEvent来处理该事件,然后同理递归着ViewC在onTouchEvent中对于事件的处理逻辑,直到ViewGroupA将事件处理完反馈给Activity。

四、源码解析

从上面的情景log中大家应该可以看出,事件分发机制的最初始的入口就是ViewGroup的dispatchTouchEvent,下面就看看其代码:

  • @Override
  • public boolean dispatchTouchEvent(MotionEvent ev) {
  • if (mInputEventConsistencyVerifier != null) {
  • mInputEventConsistencyVerifier.onTouchEvent(ev, 1);
  • }
  • // If the event targets the accessibility focused view and this is it, start
  • // normal event dispatch. Maybe a descendant is what will handle the click.
  • if (ev.isTargetAccessibilityFocus() && isAccessibilityFocusedViewOrHost()) {
  • ev.setTargetAccessibilityFocus(false);
  • }
  • boolean handled = false;
  • if (onFilterTouchEventForSecurity(ev)) {
  • final int action = ev.getAction();
  • final int actionMasked = action & MotionEvent.ACTION_MASK;
  • // Handle an initial down.
  • if (actionMasked == MotionEvent.ACTION_DOWN) {
  • // Throw away all previous state when starting a new touch gesture.
  • // The framework may have dropped the up or cancel event for the previous gesture
  • // due to an app switch, ANR, or some other state change.
  • cancelAndClearTouchTargets(ev);
  • resetTouchState();
  • }
  • // Check for interception.
  • final boolean intercepted;
  • if (actionMasked == MotionEvent.ACTION_DOWN
  • || mFirstTouchTarget != null) {
  • final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0;
  • if (!disallowIntercept) {
  • intercepted = onInterceptTouchEvent(ev);
  • ev.setAction(action); // restore action in case it was changed
  • } else {
  • intercepted = false;
  • }
  • } else {
  • // There are no touch targets and this action is not an initial down
  • // so this view group continues to intercept touches.
  • intercepted = true;
  • }
  • // If intercepted, start normal event dispatch. Also if there is already
  • // a view that is handling the gesture, do normal event dispatch.
  • if (intercepted || mFirstTouchTarget != null) {
  • ev.setTargetAccessibilityFocus(false);
  • }
  • // Check for cancelation.
  • final boolean canceled = resetCancelNextUpFlag(this)
  • || actionMasked == MotionEvent.ACTION_CANCEL;
  • // Update list of touch targets for pointer down, if needed.
  • final boolean split = (mGroupFlags & FLAG_SPLIT_MOTION_EVENTS) != 0;
  • TouchTarget newTouchTarget = null;
  • boolean alreadyDispatchedToNewTouchTarget = false;
  • if (!canceled && !intercepted) {
  • // If the event is targeting accessiiblity focus we give it to the
  • // view that has accessibility focus and if it does not handle it
  • // we clear the flag and dispatch the event to all children as usual.
  • // We are looking up the accessibility focused host to avoid keeping
  • // state since these events are very rare.
  • View childWithAccessibilityFocus = ev.isTargetAccessibilityFocus()
  • ? findChildWithAccessibilityFocus() : null;
  • if (actionMasked == MotionEvent.ACTION_DOWN
  • || (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN)
  • || actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
  • final int actionIndex = ev.getActionIndex(); // always 0 for down
  • final int idBitsToAssign = split ? 1 << ev.getPointerId(actionIndex)
  • : TouchTarget.ALL_POINTER_IDS;
  • // Clean up earlier touch targets for this pointer id in case they
  • // have become out of sync.
  • removePointersFromTouchTargets(idBitsToAssign);
  • final int childrenCount = mChildrenCount;
  • if (newTouchTarget == null && childrenCount != 0) {
  • final float x = ev.getX(actionIndex);
  • final float y = ev.getY(actionIndex);
  • // Find a child that can receive the event.
  • // Scan children from front to back.
  • final ArrayList<View> preorderedList = buildOrderedChildList();
  • final boolean customOrder = preorderedList == null
  • && isChildrenDrawingOrderEnabled();
  • final View[] children = mChildren;
  • for (int i = childrenCount - 1; i >= 0; i--) {
  • final int childIndex = customOrder
  • ? getChildDrawingOrder(childrenCount, i) : i;
  • final View child = (preorderedList == null)
  • ? children[childIndex] : preorderedList.get(childIndex);
  • // If there is a view that has accessibility focus we want it
  • // to get the event first and if not handled we will perform a
  • // normal dispatch. We may do a double iteration but this is
  • // safer given the timeframe.
  • if (childWithAccessibilityFocus != null) {
  • if (childWithAccessibilityFocus != child) {
  • continue;
  • }
  • childWithAccessibilityFocus = null;
  • i = childrenCount - 1;
  • }
  • if (!canViewReceivePointerEvents(child)
  • || !isTransformedTouchPointInView(x, y, child, null)) {
  • ev.setTargetAccessibilityFocus(false);
  • continue;
  • }
  • newTouchTarget = getTouchTarget(child);
  • if (newTouchTarget != null) {
  • // Child is already receiving touch within its bounds.
  • // Give it the new pointer in addition to the ones it is handling.
  • newTouchTarget.pointerIdBits |= idBitsToAssign;
  • break;
  • }
  • resetCancelNextUpFlag(child);
  • if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign)) {
  • // Child wants to receive touch within its bounds.
  • mLastTouchDownTime = ev.getDownTime();
  • if (preorderedList != null) {
  • // childIndex points into presorted list, find original index
  • for (int j = 0; j < childrenCount; j++) {
  • if (children[childIndex] == mChildren[j]) {
  • mLastTouchDownIndex = j;
  • break;
  • }
  • }
  • } else {
  • mLastTouchDownIndex = childIndex;
  • }
  • mLastTouchDownX = ev.getX();
  • mLastTouchDownY = ev.getY();
  • newTouchTarget = addTouchTarget(child, idBitsToAssign);
  • alreadyDispatchedToNewTouchTarget = true;
  • break;
  • }
  • // The accessibility focus didn't handle the event, so clear
  • // the flag and do a normal dispatch to all children.
  • ev.setTargetAccessibilityFocus(false);
  • }
  • if (preorderedList != null) preorderedList.clear();
  • }
  • if (newTouchTarget == null && mFirstTouchTarget != null) {
  • // Did not find a child to receive the event.
  • // Assign the pointer to the least recently added target.
  • newTouchTarget = mFirstTouchTarget;
  • while (newTouchTarget.next != null) {
  • newTouchTarget = newTouchTarget.next;
  • }
  • newTouchTarget.pointerIdBits |= idBitsToAssign;
  • }
  • }
  • }
  • // Dispatch to touch targets.
  • if (mFirstTouchTarget == null) {
  • // No touch targets so treat this as an ordinary view.
  • handled = dispatchTransformedTouchEvent(ev, canceled, null,
  • TouchTarget.ALL_POINTER_IDS);
  • } else {
  • // Dispatch to touch targets, excluding the new touch target if we already
  • // dispatched to it. Cancel touch targets if necessary.
  • TouchTarget predecessor = null;
  • TouchTarget target = mFirstTouchTarget;
  • while (target != null) {
  • final TouchTarget next = target.next;
  • if (alreadyDispatchedToNewTouchTarget && target == newTouchTarget) {
  • handled = true;
  • } else {
  • final boolean cancelChild = resetCancelNextUpFlag(target.child)
  • || intercepted;
  • if (dispatchTransformedTouchEvent(ev, cancelChild,
  • target.child, target.pointerIdBits)) {
  • handled = true;
  • }
  • if (cancelChild) {
  • if (predecessor == null) {
  • mFirstTouchTarget = next;
  • } else {
  • predecessor.next = next;
  • }
  • target.recycle();
  • target = next;
  • continue;
  • }
  • }
  • predecessor = target;
  • target = next;
  • }
  • }
  • // Update list of touch targets for pointer up or cancel, if needed.
  • if (canceled
  • || actionMasked == MotionEvent.ACTION_UP
  • || actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
  • resetTouchState();
  • } else if (split && actionMasked == MotionEvent.ACTION_POINTER_UP) {
  • final int actionIndex = ev.getActionIndex();
  • final int idBitsToRemove = 1 << ev.getPointerId(actionIndex);
  • removePointersFromTouchTargets(idBitsToRemove);
  • }
  • }
  • if (!handled && mInputEventConsistencyVerifier != null) {
  • mInputEventConsistencyVerifier.onUnhandledEvent(ev, 1);
  • }
  • return handled;
  • }

这方法看似比较长,但我们只挑比较重要的点来看,在第32行会根据disallowIntercept来判断是否对子view来进行事件拦截,子view可以通过调用requestDisallowInterceptTouchEvent()方法来改变其值,如果可以进行拦截,则会调用onInterceptTouchEvent()方法, 根据其返回值来判断需不需要对子View进行拦截,默认情况下onInterceptTouchEvent()方法返回的是false,所以如果我们在自定义View时如果想拦截的话,可以重写这个方法返回true就行了。

然后在第58行的if条件中,会根据是否取消canceled以及之前的是否拦截的标志intercepted来判断是否走进下面的逻辑代码块,这里我们只看intercepted,如果没有拦截,则会进入if后面的逻辑代码块,直到第89行的for循环,我们会看到ViewGroup在对所有子View进行遍历,以方便接下来的事件分发, 再看到107、108行的判断,canViewReceivePointerEvents()用来判断是否该View能够接受处理事件

  • private static boolean canViewReceivePointerEvents(View child) {
  • return (child.mViewFlags & VISIBILITY_MASK) == VISIBLE
  • || child.getAnimation() != null;
  • }

可以看到只有当view处于可见状态且没有做动画时才能接收处理事件,再看isTransformedTouchPointInView()是用来判断当前事件是否触发在该view的范围之内,这里我们可以回想前面的测试情景3,当我们点击ViewGroupB时,ViewC完全没有收到任何事件,就是因为点击事件不在ViewC的范围之类, 在isTransformedTouchPointInView()进行判断时就给过滤掉了,所以ViewC不会收到任何分发的事件。 再看看第122行,会调用dispatchTransformedTouchEvent()来将事件分发给对应的view进行处理,让我们进入其方法体看看

  • private boolean dispatchTransformedTouchEvent(MotionEvent event, boolean cancel,
  • View child, int desiredPointerIdBits) {
  • final boolean handled;
  • // Canceling motions is a special case. We don't need to perform any transformations
  • // or filtering. The important part is the action, not the contents.
  • final int oldAction = event.getAction();
  • if (cancel || oldAction == MotionEvent.ACTION_CANCEL) {
  • event.setAction(MotionEvent.ACTION_CANCEL);
  • if (child == null) {
  • handled = super.dispatchTouchEvent(event);
  • } else {
  • handled = child.dispatchTouchEvent(event);
  • }
  • event.setAction(oldAction);
  • return handled;
  • }
  • // Calculate the number of pointers to deliver.
  • final int oldPointerIdBits = event.getPointerIdBits();
  • final int newPointerIdBits = oldPointerIdBits & desiredPointerIdBits;
  • // If for some reason we ended up in an inconsistent state where it looks like we
  • // might produce a motion event with no pointers in it, then drop the event.
  • if (newPointerIdBits == 0) {
  • return false;
  • }
  • // If the number of pointers is the same and we don't need to perform any fancy
  • // irreversible transformations, then we can reuse the motion event for this
  • // dispatch as long as we are careful to revert any changes we make.
  • // Otherwise we need to make a copy.
  • final MotionEvent transformedEvent;
  • if (newPointerIdBits == oldPointerIdBits) {
  • if (child == null || child.hasIdentityMatrix()) {
  • if (child == null) {
  • handled = super.dispatchTouchEvent(event);
  • } else {
  • final float offsetX = mScrollX - child.mLeft;
  • final float offsetY = mScrollY - child.mTop;
  • event.offsetLocation(offsetX, offsetY);
  • handled = child.dispatchTouchEvent(event);
  • event.offsetLocation(-offsetX, -offsetY);
  • }
  • return handled;
  • }
  • transformedEvent = MotionEvent.obtain(event);
  • } else {
  • transformedEvent = event.split(newPointerIdBits);
  • }
  • // Perform any necessary transformations and dispatch.
  • if (child == null) {
  • handled = super.dispatchTouchEvent(transformedEvent);
  • } else {
  • final float offsetX = mScrollX - child.mLeft;
  • final float offsetY = mScrollY - child.mTop;
  • transformedEvent.offsetLocation(offsetX, offsetY);
  • if (! child.hasIdentityMatrix()) {
  • transformedEvent.transform(child.getInverseMatrix());
  • }
  • handled = child.dispatchTouchEvent(transformedEvent);
  • }
  • // Done.
  • transformedEvent.recycle();
  • return handled;
  • }

我们看到在方法的末尾第55行,如果child为Null,则会调用ViewGroup的父类View的dispatchTouchEvent,否则就会调用child自身的dispatchTouchEvent方法进行事件分发处理。 如果child是ViewGroup,则会又递归调用ViewGroup的dispatchTouchEvent方法逻辑进行事件分发,如果是View,则跟child为Null情况一样,都是会调到View的dispatchTouchEvent方法,接下来我们看看View的dispatchTouchEvent方法

  • public boolean dispatchTouchEvent(MotionEvent event) {
  • // If the event should be handled by accessibility focus first.
  • if (event.isTargetAccessibilityFocus()) {
  • // We don't have focus or no virtual descendant has it, do not handle the event.
  • if (!isAccessibilityFocusedViewOrHost()) {
  • return false;
  • }
  • // We have focus and got the event, then use normal event dispatch.
  • event.setTargetAccessibilityFocus(false);
  • }
  • boolean result = false;
  • if (mInputEventConsistencyVerifier != null) {
  • mInputEventConsistencyVerifier.onTouchEvent(event, 0);
  • }
  • final int actionMasked = event.getActionMasked();
  • if (actionMasked == MotionEvent.ACTION_DOWN) {
  • // Defensive cleanup for new gesture
  • stopNestedScroll();
  • }
  • if (onFilterTouchEventForSecurity(event)) {
  • //noinspection SimplifiableIfStatement
  • ListenerInfo li = mListenerInfo;
  • if (li != null && li.mOnTouchListener != null
  • && (mViewFlags & ENABLED_MASK) == ENABLED
  • && li.mOnTouchListener.onTouch(this, event)) {
  • result = true;
  • }
  • if (!result && onTouchEvent(event)) {
  • result = true;
  • }
  • }
  • if (!result && mInputEventConsistencyVerifier != null) {
  • mInputEventConsistencyVerifier.onUnhandledEvent(event, 0);
  • }
  • // Clean up after nested scrolls if this is the end of a gesture;
  • // also cancel it if we tried an ACTION_DOWN but we didn't want the rest
  • // of the gesture.
  • if (actionMasked == MotionEvent.ACTION_UP ||
  • actionMasked == MotionEvent.ACTION_CANCEL ||
  • (actionMasked == MotionEvent.ACTION_DOWN && !result)) {
  • stopNestedScroll();
  • }
  • return result;
  • }

同样我们捡重点的看,第23行用来做过滤,看是否有窗口覆盖在上面,第27~29行三个判断条件说明了,当View的touch事件监听器不为空,View是enable状态,且touch事件监听回调方法onTouch方法返回true三个条件同时满足时,则会最终返回true,而且第33行的onTouchEvent方法都不会得到执行, 这说明View的OnTouchListener监听回调的优先级要高于onTouchEvent,如果我们给View设置了OnTouchListener监听,并且在回调方法onTouch()中返回true,View的onTouchEvent就得不到执行,其dispatchTouchEvent方法就会直接返回true给父容器, 相反如果返回false,或者没有设置OnTouchListener监听,才会执行onTouchEvent()方法对分发来的事件进行处理。 接着再去看看onTouchEvent()中如何对事件进行处理的。

  • public boolean onTouchEvent(MotionEvent event) {
  • final float x = event.getX();
  • final float y = event.getY();
  • final int viewFlags = mViewFlags;
  • final int action = event.getAction();
  • if ((viewFlags & ENABLED_MASK) == DISABLED) {
  • if (action == MotionEvent.ACTION_UP && (mPrivateFlags & PFLAG_PRESSED) != 0) {
  • setPressed(false);
  • }
  • // A disabled view that is clickable still consumes the touch
  • // events, it just doesn't respond to them.
  • return (((viewFlags & CLICKABLE) == CLICKABLE
  • || (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)
  • || (viewFlags & CONTEXT_CLICKABLE) == CONTEXT_CLICKABLE);
  • }
  • if (mTouchDelegate != null) {
  • if (mTouchDelegate.onTouchEvent(event)) {
  • return true;
  • }
  • }
  • if (((viewFlags & CLICKABLE) == CLICKABLE ||
  • (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE) ||
  • (viewFlags & CONTEXT_CLICKABLE) == CONTEXT_CLICKABLE) {
  • switch (action) {
  • case MotionEvent.ACTION_UP:
  • boolean prepressed = (mPrivateFlags & PFLAG_PREPRESSED) != 0;
  • if ((mPrivateFlags & PFLAG_PRESSED) != 0 || prepressed) {
  • // take focus if we don't have it already and we should in
  • // touch mode.
  • boolean focusTaken = false;
  • if (isFocusable() && isFocusableInTouchMode() && !isFocused()) {
  • focusTaken = requestFocus();
  • }
  • if (prepressed) {
  • // The button is being released before we actually
  • // showed it as pressed. Make it show the pressed
  • // state now (before scheduling the click) to ensure
  • // the user sees it.
  • setPressed(true, x, y);
  • }
  • if (!mHasPerformedLongPress && !mIgnoreNextUpEvent) {
  • // This is a tap, so remove the longpress check
  • removeLongPressCallback();
  • // Only perform take click actions if we were in the pressed state
  • if (!focusTaken) {
  • // Use a Runnable and post this rather than calling
  • // performClick directly. This lets other visual state
  • // of the view update before click actions start.
  • if (mPerformClick == null) {
  • mPerformClick = new PerformClick();
  • }
  • if (!post(mPerformClick)) {
  • performClick();
  • }
  • }
  • }
  • if (mUnsetPressedState == null) {
  • mUnsetPressedState = new UnsetPressedState();
  • }
  • if (prepressed) {
  • postDelayed(mUnsetPressedState,
  • ViewConfiguration.getPressedStateDuration());
  • } else if (!post(mUnsetPressedState)) {
  • // If the post failed, unpress right now
  • mUnsetPressedState.run();
  • }
  • removeTapCallback();
  • }
  • mIgnoreNextUpEvent = false;
  • break;
  • case MotionEvent.ACTION_DOWN:
  • mHasPerformedLongPress = false;
  • if (performButtonActionOnTouchDown(event)) {
  • break;
  • }
  • // Walk up the hierarchy to determine if we're inside a scrolling container.
  • boolean isInScrollingContainer = isInScrollingContainer();
  • // For views inside a scrolling container, delay the pressed feedback for
  • // a short period in case this is a scroll.
  • if (isInScrollingContainer) {
  • mPrivateFlags |= PFLAG_PREPRESSED;
  • if (mPendingCheckForTap == null) {
  • mPendingCheckForTap = new CheckForTap();
  • }
  • mPendingCheckForTap.x = event.getX();
  • mPendingCheckForTap.y = event.getY();
  • postDelayed(mPendingCheckForTap, ViewConfiguration.getTapTimeout());
  • } else {
  • // Not inside a scrolling container, so show the feedback right away
  • setPressed(true, x, y);
  • checkForLongClick(0);
  • }
  • break;
  • case MotionEvent.ACTION_CANCEL:
  • setPressed(false);
  • removeTapCallback();
  • removeLongPressCallback();
  • mInContextButtonPress = false;
  • mHasPerformedLongPress = false;
  • mIgnoreNextUpEvent = false;
  • break;
  • case MotionEvent.ACTION_MOVE:
  • drawableHotspotChanged(x, y);
  • // Be lenient about moving outside of buttons
  • if (!pointInView(x, y, mTouchSlop)) {
  • // Outside button
  • removeTapCallback();
  • if ((mPrivateFlags & PFLAG_PRESSED) != 0) {
  • // Remove any future long press/tap checks
  • removeLongPressCallback();
  • setPressed(false);
  • }
  • }
  • break;
  • }
  • return true;
  • }
  • return false;
  • }

从第7-16行可以看出,当View为disable状态,而又clickable时,是会消费掉事件的,只不过在界面上没有任何的响应。 第18~22行,关于TouchDelegate,根据对官方文档的理解就是说有两个View, ViewB在ViewA中,ViewA比较大,如果我们想点击ViewA的时候,让ViewB去响应点击事件,这时候就需要使用到TouchDelegate, 简单的理解就是如果该View有自己的事件委托处理人,就交给委托人处理。 从第24~26行可以看出,只有当View是可点击状态时,才会进入对应各种事件的详细处理逻辑,否则会直接返回false,表明该事件没有被消费。 在第59行,可以看到在Action_Up事件被触发时,会执行performClick(),也就是View的点击事件,由此可知,view的onClick()回调是在Action_Up事件中被触发的。 第134行直接返回了true,可以看出只要View处于可点击状态,并且进入了switch的判断逻辑,就会被返回true,表明该事件被消费掉了,也就是说只要View是可点击的,事件传到了其OnTouchEvent,都会被消费掉。 而平时我们在调用setOnClickListener方法给View设置点击事件监听时,都会将其点击状态修改为可点击状态。

  • public void setOnClickListener(@Nullable OnClickListener l) {
  • if (!isClickable()) {
  • setClickable(true);
  • }
  • getListenerInfo().mOnClickListener = l;
  • }

追溯完View的事件分发流程,我们再返回到ViewGroup的dispatchTouchEvent方法的122行,如果对应得child消费了点击事件,就会通过对应的dispatchTouchEvent方法返回true并最终在122行使得条件成立,然后会进入到138行, 调用addTouchTarget对newTouchTarget进行赋值,并且mFirstTouchTarget跟newTouchTarget的值都一样,然后将alreadyDispatchedToNewTouchTarget置为true

  • private TouchTarget addTouchTarget(View child, int pointerIdBits) {
  • TouchTarget target = TouchTarget.obtain(child, pointerIdBits);
  • target.next = mFirstTouchTarget;
  • mFirstTouchTarget = target;
  • return target;
  • }

然后来到了163行,由于mFirstTouchTarget和newTouchTarget在addTouchTarget中都被赋值了,所以会直接进入172行的while循环,由于之前在138、139行对mFirstTouchTarget、newTouchTarget、 alreadyDispatchedToNewTouchTarget都赋值了,使得174行条件成立,所以就直接返回true了,至此,ViewGroup就完成了对子View的遍历及事件分发,由于事件被消费掉了,所以ViewGroup对应的所有外围容器都会递归回调dispatchTouchEvent将true传递给Activity, 到这也就解释了测试情景2的产生原理。 在Down相关事件被消费掉之后,后续的Move、Up事件在dispatchTouchEvent方法的68~70行不符合判断条件,直接会来到179行的dispatchTransformedTouchEvent方法继续进行分发,待子View进行消费。

如果在ViewGroup的dispatchTouchEvent方法第58行被拦截了(对应测试情景4),或者107~108行不成立(对应测试情景3),或者122行返回false(即子View没有消费事件,对应测试情景1),则会直接进入到第163行,这时mFirstTouchTarget肯定为空, 所以会又调用dispatchTransformedTouchEvent方法,而且传进去的child为空,最终就会直接走到dispatchTransformedTouchEvent方法的55行,然后调用super.dispatchTouchEvent,之后的处理逻辑跟前面调View的dispatchTouchEvent逻辑一样。

终上所述,整个Android的事件分发机制可以大致概括成如下的流程图:

在这里插入图片描述
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐