目前,Android 平台支持的运动传感器包括以下 5 种:
本节教程将对这几种传感器的用法做简单介绍。
获取加速度传感器实例的代码如下:
private SensorManager mSensorManager;
private Sensor mSensor;
...
mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
从传感器获取数据并计算三个方向的加速度的代码如下:
public void onSensorChanged(SensorEvent event) {
// In this example, alpha is calculated as t / (t+dT) ,
// where t is the low-pass filter's time-constant and
// dT is the event delivery rate.
final float alpha = 0.8;
// Isolate the force of gravity with the low-pass filter.
gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
gravity[1] = alpha * gravity[l] + (1 - alpha) * event.values[1];
gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
// Remove the gravity contribution with the high-pass filter.
linear_acceleration[0] = event.values[0] - gravity[0];
linear_acceleration[1] = event.values[1] - gravity[l];
linear_acceleration[2] = event.values[2] - gravity[2];
}
该计算方法仅是举例使用,实际计算方法要针对应用而确定。
重力传感器是加速度传感器的一种,其数据处理方式也相似。此处不再重复重力传感器的数据计算方法。获取重力传感器的代码如下:
private SensorManager mSensorManager;
private Sensor mSensor;
...
mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY);
陀螺仪可以在三个纬度上测量设备的旋转情况。获取陀螺仪传感器的代码如下:
private SensorManager mSensorManager;
private Sensor mSensor;
...
mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
从陀螺仪数据计算三个纬度旋转情况的代码如下:
// Create a constant to convert nanoseconds to seconds.
private static final float NS2S = 1.0f / 1000000000.0f;
private final float[] deltaRotationVector = new float[4]();
private float timestamp;
public void onSensorChanged(SensorEvent event) {
// This timestep's delta rotation to be multiplied by the current rotation
// after computing it from the gyro sample data.
if (timestamp != 0) {
final float dT = (event.timestamp - timestamp) * NS2S;
// Axis of the rotation sample, not normalized yet.
float axisX = event.values[0];
float axisY = event.values[1];
float axisZ = event.values[2];
// Calculate the angular speed of the sample
float omegaMagnitude = sqrt(axisX * axisX + axisY * axisY + axisZ * axisZ);
// Normalize the rotation vector if it's big enough to get the axis
// (that is, EPSILON should represent your maximum allowable margin of error)
if (omegaMagnitude > EPSILON) {
axisX /= omegaMagnitude;
axisY /= omegaMagnitude;
axisZ /= omegaMagnitude;
}
// Integrate around this axis with the angular speed by the timestep
// in order to get a delta rotation from this sample over the timestep
// We will convert this axis-angle representation of the delta rotation
// into a quaternion before turning it into the rotation matrix.
float thetaOverTwo = omegaMagnitude * dT / 2. Of;
float sinThetaOverTwo = sin(thetaOverTwo);
float cosThetaOverTwo = cos(thetaOverTwo);
deltaRotationVector[0] = sinThetaOverTwo * axisX;
deltaRotationVector[1] = sinThetaOverTwo * axisY;
deltaRotationVector[2] = sinThetaOverTwo * axisZ;
deltaRotationVector[3] = cosThetaOverTwo;
}
timestamp = event.timestamp;
float[] deltaRotationMatrix = new float[9];
SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
// User code should concatenate the delta rotation we computed with the current rotation
// in order to get the updated rotation.
// rotationCurrent=rotationCurrent * deltaRotationMatrix;
}
线性加速度传感器是传感器的一种。其获取实例的代码如下:
private SensorManager mSensorManager;
private Sensor mSensor;
...
mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION);
旋转向量传感器能反映出当前设备的状态,其返回值是旋转角度与旋转轴的集合。获取旋转向量传感器实例的相关代码如下:
private SensorManager mSensorManager;
private Sensor mSensor;
....
mSensorManager=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
mSensor=mSensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);