排序算法 | 平均时间复杂度 |
---|---|
冒泡排序 | O(n2) |
选择排序 | O(n2) |
插入排序 | O(n2) |
希尔排序 | O(n1.5) |
快速排序 | O(N*logN) |
归并排序 | O(N*logN) |
堆排序 | O(N*logN) |
基数排序 | O(d(n+r)) |
public static void BubbleSort(int [] arr){
int temp;//临时变量
for(int i=0; i<arr.length-1; i++){ //表示趟数,一共arr.length-1次。
for(int j=arr.length-1; j>i; j--){
if(arr[j] < arr[j-1]){
temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;
}
}
}
}
public static void BubbleSort1(int [] arr){
int temp;//临时变量
boolean flag;//是否交换的标志
for(int i=0; i<arr.length-1; i++){ //表示趟数,一共 arr.length-1 次
// 每次遍历标志位都要先置为false,才能判断后面的元素是否发生了交换
flag = false;
for(int j=arr.length-1; j>i; j--){ //选出该趟排序的最大值往后移动
if(arr[j] < arr[j-1]){
temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;
flag = true; //只要有发生了交换,flag就置为true
}
}
// 判断标志位是否为false,如果为false,说明后面的元素已经有序,就直接return
if(!flag) break;
}
}
选择排序
public static void select_sort(int array[],int lenth){
for(int i=0;i<lenth-1;i++){
int minIndex = i;
for(int j=i+1;j<lenth;j++){
if(array[j]<array[minIndex]){
minIndex = j;
}
}
if(minIndex != i){
int temp = array[i];
array[i] = array[minIndex];
array[minIndex] = temp;
}
}
}
插入排序
相同的场景
public static void insert_sort(int array[],int lenth){
int temp;
for(int i=0;i<lenth-1;i++){
for(int j=i+1;j>0;j--){
if(array[j] < array[j-1]){
temp = array[j-1];
array[j-1] = array[j];
array[j] = temp;
}else{ //不需要交换
break;
}
}
}
}
希尔排序
public static void shell_sort(int array[],int lenth){
int temp = 0;
int incre = lenth;
while(true){
incre = incre/2;
for(int k = 0;k<incre;k++){ //根据增量分为若干子序列
for(int i=k+incre;i<lenth;i+=incre){
for(int j=i;j>k;j-=incre){
if(array[j]<array[j-incre]){
temp = array[j-incre];
array[j-incre] = array[j];
array[j] = temp;
}else{
break;
}
}
}
}
if(incre == 1){
break;
}
}
}
数组:72 - 6 - 57 - 88 - 60 - 42 - 83 - 73 - 48 - 85
0 1 2 3 4 5 6 7 8 9
数组:48 - 6 - 57 - 88 - 60 - 42 - 83 - 73 - 88 - 85
0 1 2 3 4 5 6 7 8 9
<数组:48 - 6 - 57 - 42 - 60 - 72 - 83 - 73 - 88 - 85
0 1 2 3 4 5 6 7 8 9
public static void quickSort(int a[],int l,int r){
if(l>=r)
return;
int i = l; int j = r; int key = a[l];//选择第一个数为key
while(i<j){
while(i<j && a[j]>=key)//从右向左找第一个小于key的值
j--;
if(i<j){
a[i] = a[j];
i++;
}
while(i<j && a[i]<key)//从左向右找第一个大于key的值
i++;
if(i<j){
a[j] = a[i];
j--;
}
}
//i == j
a[i] = key;
quickSort(a, l, i-1);//递归调用
quickSort(a, i+1, r);//递归调用
}
key值的选取可以有多种形式,例如中间数或者随机数,分别会对算法的复杂度产生不同的影响。
//将有序数组a[]和b[]合并到c[]中
void MemeryArray(int a[], int n, int b[], int m, int c[])
{
int i, j, k;
i = j = k = 0;
while (i < n && j < m)
{
if (a[i] < b[j])
c[k++] = a[i++];
else
c[k++] = b[j++];
}
while (i < n)
c[k++] = a[i++];
while (j < m)
c[k++] = b[j++];
}
解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成2组A,B,如果这2组组内的数据都是有序的,那么就可以很方便的将这2组数据进行排序。如何让这2组组内数据有序了?
可以将A,B组各自再分成2组。依次类推,当分出来的小组只有1个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的2个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
归并排序
public static void merge_sort(int a[],int first,int last,int temp[]){
if(first < last){
int middle = (first + last)/2;
merge_sort(a,first,middle,temp);//左半部分排好序
merge_sort(a,middle+1,last,temp);//右半部分排好序
mergeArray(a,first,middle,last,temp); //合并左右部分
}
}
//合并 :将两个序列a[first-middle],a[middle+1-end]合并
public static void mergeArray(int a[],int first,int middle,int end,int temp[]){
int i = first;
int m = middle;
int j = middle+1;
int n = end;
int k = 0;
while(i<=m && j<=n){
if(a[i] <= a[j]){
temp[k] = a[i];
k++;
i++;
}else{
temp[k] = a[j];
k++;
j++;
}
}
while(i<=m){
temp[k] = a[i];
k++;
i++;
}
while(j<=n){
temp[k] = a[j];
k++;
j++;
}
for(int ii=0;ii<k;ii++){
a[first + ii] = temp[ii];
}
}
Heap Sort
//构建最小堆
public static void MakeMinHeap(int a[], int n){
for(int i=(n-1)/2 ; i>=0 ; i--){
MinHeapFixdown(a,i,n);
}
}
//从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
public static void MinHeapFixdown(int a[],int i,int n){
int j = 2*i+1; //子节点
int temp = 0;
while(j<n){
//在左右子节点中寻找最小的
if(j+1<n && a[j+1]<a[j]){
j++;
}
if(a[i] <= a[j])
break;
//较大节点下移
temp = a[i];
a[i] = a[j];
a[j] = temp;
i = j;
j = 2*i+1;
}
}
public static void MinHeap_Sort(int a[],int n){
int temp = 0;
MakeMinHeap(a,n);
for(int i=n-1;i>0;i--){
temp = a[0];
a[0] = a[i];
a[i] = temp;
MinHeapFixdown(a,0,i);
}
}
BinSort
过程1
过程2
(1)首先确定基数为10,数组的长度也就是10.每个数34都会在这10个数中寻找自己的位置。
(2)不同于BinSort会直接将数34放在数组的下标34处,基数排序是将34分开为3和4,第一轮排序根据最末位放在数组的下标4处,第二轮排序根据倒数第二位放在数组的下标3处,然后遍历数组即可。
public static void RadixSort(int A[],int temp[],int n,int k,int r,int cnt[]){
//A:原数组
//temp:临时数组
//n:序列的数字个数
//k:最大的位数2
//r:基数10
//cnt:存储bin[i]的个数
for(int i=0 , rtok=1; i<k ; i++ ,rtok = rtok*r){
//初始化
for(int j=0;j<r;j++){
cnt[j] = 0;
}
//计算每个箱子的数字个数
for(int j=0;j<n;j++){
cnt[(A[j]/rtok)%r]++;
}
//cnt[j]的个数修改为前j个箱子一共有几个数字
for(int j=1;j<r;j++){
cnt[j] = cnt[j-1] + cnt[j];
}
for(int j = n-1;j>=0;j--){ //重点理解
cnt[(A[j]/rtok)%r]--;
temp[cnt[(A[j]/rtok)%r]] = A[j];
}
for(int j=0;j<n;j++){
A[j] = temp[j];
}
}
}
本文shell排序代码可能出现对于0索引位置无法排序的问题,建议加一点修改如下:
.....
int incre = arr.length;
while(true){
incre = incre / 2;
for(int k = 0; k< incre; k++){
for(int i = k + incre; i < arr.length; i++){
for(int j = i; j >= k; j -= incre){
if(j - incre >= k && arr[j] < arr[j - incre]){
int temp = arr[j];
arr[j] = arr[j - incre];
arr[j - incre] = temp;
}else
break;
}
}
}
if(incre == 1)
break;
}
......