上一节讲了二叉树的顺序存储,通过学习你会发现,其实二叉树并不适合用数组存储,因为并不是每个二叉树都是完全二叉树,普通二叉树使用顺序表存储或多或多会存在空间浪费的现象。
本节我们学习二叉树的链式存储结构。
如图 1 所示,此为一棵普通的二叉树,若将其采用链式存储,则只需从树的根节点开始,将各个节点及其左右孩子使用链表存储即可。因此,图 1 对应的链式存储结构如图 2 所示:
由图 2 可知,采用链式存储二叉树时,其节点结构由 3 部分构成(如图 3 所示):
表示该节点结构的 C 语言代码为:
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
struct BiTNode *parent;
}BiTNode,*BiTree;
图 2 中的链式存储结构对应的 C 语言代码为:
#include <stdio.h>
#include <stdlib.h>
#define TElemType int
typedef struct BiTNode{
TElemType data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
void CreateBiTree(BiTree *T){
*T=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->data=1;
(*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->data=3;
(*T)->rchild->lchild=NULL;
(*T)->rchild->rchild=NULL;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->lchild->data=4;
(*T)->lchild->rchild=NULL;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;
}
int main() {
BiTree Tree;
CreateBiTree(&Tree);
printf("%d",Tree->lchild->lchild->data);
return 0;
}
程序输出结果:
其实,二叉树的链式存储结构远不止图 2 所示的这一种。例如,在某些实际场景中,可能会做 "查找某节点的父节点" 的操作,这时可以在节点结构中再添加一个指针域,用于各个节点指向其父亲节点,如图 4 所示:
利用图 4 所示的三叉链表,我们可以很轻松地找到各节点的父节点。因此,在解决实际问题时,用合适的链表结构存储二叉树,可以起到事半功倍的效果。