您当前的位置:首页 > 计算机 > 编程开发 > Python

scrapy爬取统计局的城乡代码,以目录文件夹形式生成,同时最后保存在excel中

时间:12-10来源:作者:点击数:

1、创建Scrapy项目

scrapy startproject Stats

2.进入项目目录,使用命令genspider创建Spider

scrapy genspider stats stats.gov.cn

3、定义要抓取的数据(处理items.py文件)

# -*- coding: utf-8 -*-
import scrapy

class StatsItem(scrapy.Item):
    # 第一级名称,各个省、直辖市
    first_titles = scrapy.Field()
    # 第一级url
    first_urls = scrapy.Field()
    # 第一级存储目录
    first_filename = scrapy.Field()

    # 第二级名称,市、县
    second_titles = scrapy.Field()
    # 第二级url
    second_urls = scrapy.Field()
    # 第二级代码ID
    second_id = scrapy.Field()
    # 二级存储目录
    second_filename = scrapy.Field()

    # 第三级名称,区
    third_titles = scrapy.Field()
    # 第三级url
    third_urls = scrapy.Field()
    # 第三级代码ID
    third_id = scrapy.Field()
    # 三级存储目录
    third_filename = scrapy.Field()

    # 第四级名称,办事处
    fourth_titles = scrapy.Field()
    # 第四级url
    fourth_urls = scrapy.Field()
    # 第四级代码ID
    fourth_id = scrapy.Field()
    # 四级存储目录
    fourth_filename = scrapy.Field()

    # 第五级名称,村,居委会
    fifth_titles = scrapy.Field()
    # 第五级代码ID
    fifth_id = scrapy.Field()
    # 五级存储目录
    fifth_filename = scrapy.Field()

4、编写提取item数据的Spider(在spiders文件夹下:stats.py)

# -*- coding: utf-8 -*-
# 爬取统计局的城乡代码
import scrapy
import os
from Stats.items import StatsItem

class StatsSpider(scrapy.Spider):
    name = 'stats'
    allowed_domains = ['stats.gov.cn']
    start_urls = ['http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/index.html']
    # 各个省、直辖市url前缀
    url = 'http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/'

    def parse(self, response):
        print("处理第一级数据……")
        items = []
        # 第一级名称,各个省、直辖市(这里可以修改规则,爬取一部分省份)
        first_titles = response.xpath('//tr//td/a/text()').extract()
        # 第一级url>>>13.html
        first_urls_list = response.xpath('//tbody//table//tr//td//a//@href').extract()
        # 爬取第一级名称,各个省、直辖市
        for i in range(0, len(first_titles)):
            item = StatsItem()
            # 指定第一级目录的路径和目录名
            first_filename = "./Data/" + first_titles[i]
            #如果目录不存在,则创建目录
            if(not os.path.exists(first_filename)):
                os.makedirs(first_filename)
            item['first_filename'] = first_filename
            # 保存第一级名称和url,但是url需要补全
            item['first_titles'] = first_titles[i]
            # http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13.html
            item['first_urls'] = self.url + first_urls_list[i]
            items.append(item)
        # 发送第一级爬取的url
        for item in items:
            yield scrapy.Request(url=item['first_urls'],meta={'meta_1': item},callback= self.second_parse)
    # 处理第二级名称以及url,市、县
    def second_parse(self,response):
        print("处理第二级数据……")
        # 提取每次Response的meta数据
        meta_1 = response.meta['meta_1']
        # 提取第二级的名称、url及id
        second_titles = response.xpath('//tr//td[2]/a/text()').extract()
        # 第二级url>>>>13/1301.html
        second_urls_list = response.xpath('//tbody//table//tr//td[2]//a//@href').extract()
        second_id = response.xpath('//tr//td[1]/a/text()').extract()
        items = []
        for i in range(0,len(second_urls_list)):
            # url拼接>>>http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/1301.html
            second_urls = self.url + second_urls_list[i]
            # 第一级链接地址:http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13.html
            # 如果属于第一级相应省、直辖市,将存储目录放在相应文件夹中,第一级的链接去掉.html才能判断是否属于
            #例如:修改后第一级链接http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13 和
            #   第二级链接http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/1301.html 这样才可以判断
            if_belong = second_urls.startswith(meta_1['first_urls'][:-5])
            if (if_belong):
                # 目录类似于:\Data\河北省\河北省 石家庄市
                second_filename = meta_1['first_filename']+"/"+ meta_1['first_titles']+" " + second_titles[i]
                # 如果目录不存在,则创建目录
                if (not os.path.exists(second_filename)):
                    os.makedirs(second_filename)
                item = StatsItem()
                item['first_titles'] = meta_1['first_titles']
                item['first_urls'] = meta_1['first_urls']
                item['second_titles'] = meta_1['first_titles']+" " + second_titles[i]
                item['second_urls'] = second_urls
                item['second_id'] = second_id[i]
                item['second_filename'] = second_filename
                items.append(item)
        # 发送第二级url
        for item in items:
            yield scrapy.Request(url= item['second_urls'],meta={'meta_2':item},callback= self.third_parse)
    # 处理第三级数据名称,区

    def third_parse(self,response):
        print("处理第三级数据……")
        # 提取每次Response的meta数据
        meta_2 = response.meta['meta_2']
        # 提取第三级的名称、url及id
        third_titles = response.xpath('//tr//td[2]/a/text()').extract()
        # 第三级url>>>01/130102.html  http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/130102.html
        third_urls_list = response.xpath('//tbody//table//tr//td[2]//a//@href').extract()
        third_id = response.xpath('//tr//td[1]/a/text()').extract()
        items = []
        for i in range(0,len(third_urls_list)):
            # url拼接>>>http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/130102.html
            third_urls = self.url + meta_2['second_id'][:2] + "/" + third_urls_list[i]
            # 第二级链接地址:http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/1301.html
            #                http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/11/1101.html
            #                http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/34/3415.html
            # 如果属于第二级相应市、县,将存储目录放在相应文件夹中,第二级的链接最后两位数字01是否和
            # 第三级链接倒数第14位至倒数第13位是否相等(或者第三级链接倒数第9位至第8位)
            # 或者:第二级链接最后4位(1301)和第三级链接倒数第11位至第8位是否相等
            #          http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/130102.html
            #          http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/11/01/110101.html
            #          http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/34/15/341502.html
            # if_belong = third_urls.startswith(meta_2['second_urls'][:-9])
            if (meta_2['second_urls'][-7:-5])==(third_urls[-14:-12]):
            # if (if_belong):
                # 目录类似于:\Data\河北省\河北省 石家庄市\河北省 石家庄市 长安区 130102000000
                third_filename=meta_2['second_filename']+'/'+meta_2['second_titles']+" "+third_titles[i]+" "+third_id[i]
                # 如果目录不存在,则创建目录
                if (not os.path.exists(third_filename)):
                    os.makedirs(third_filename)
                item = StatsItem()
                item['first_titles'] = meta_2['first_titles']
                item['first_urls'] = meta_2['first_urls']
                item['second_titles'] = meta_2['second_titles']
                item['second_urls'] = meta_2['second_urls']
                item['second_id'] = meta_2['second_id']
                item['second_filename'] = meta_2['second_filename']
                item['third_titles'] = meta_2['second_titles'] + " "+third_titles[i]+" "+third_id[i]
                item['third_urls'] = third_urls
                item['third_id'] = third_id[i]
                item['third_filename'] = third_filename
                items.append(item)
        # 发送第三级url
        for item in items:
            yield scrapy.Request(url=item['third_urls'],meta={'meta_3':item},callback=self.fourth_parse)

    # 处理第四级数据名称,办事处
    def fourth_parse(self,response):
        print("处理第四级数据……")
        # 提取每次Response的meta数据
        meta_3 = response.meta['meta_3']
        # 提取第四级的名称、url及id
        fourth_titles = response.xpath('//tr//td[2]/a/text()').extract()
        # 第四级url>>>02/130102001.html http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/02/130102001.html
        fourth_urls_list = response.xpath('//tbody//table//tr//td[2]//a//@href').extract()
        fourth_id = response.xpath('//tr//td[1]/a/text()').extract()
        items = []
        for i in range(0,len(fourth_urls_list)):
            # url拼接>>>http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/02/130102001.html
            fourth_urls = self.url + meta_3['third_id'][:2] + "/" + meta_3['third_id'][2:4]+"/"+fourth_urls_list[i]
            # 第三级链接地址:http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/130102.html
            #                http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/130104.html
            #                http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/11/01/110101.html
            #                http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/11/01/110102.html
            # 如果属于第三级相应区,将存储目录放在相应文件夹中,第三级链接最后两位数字02和第四级链接倒数第17位至
            # 倒数第16位是否相等来判断(或者第四级链接的倒数第10位至倒数第9位)
            # 或者第三级链接最后6位数字(130102)和第四级链接倒数第14位至倒数第9位是否相等
            #   第四级链接http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/02/130102001.html
            #            http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/13/01/04/130104001.html
            #            http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/11/01/01/110101001.html
            #            http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/11/01/02/110102001.html
            if (meta_3['third_urls'][-7:-5]) == fourth_urls[-17:-15]:
                # 最后一级目录不应该出现上一级目录结尾的数字和最后一个空格,即: 130102000000,要切掉
                # 目录类似于:\Data\河北省\河北省 石家庄市\河北省 石家庄市 长安区 130102000000\河北省 石家庄市 长安区 建北街道办事处 130102001000
                m = meta_3['third_titles']
                fourth_filename=meta_3['third_filename']+'/'+m[:m.rfind(" ")]+" "+fourth_titles[i]+" "+fourth_id[i]
                # 如果目录不存在,则创建
                if (not os.path.exists(fourth_filename)):
                    os.makedirs(fourth_filename)
                item = StatsItem()
                item['first_titles'] = meta_3['first_titles']
                item['first_urls'] = meta_3['first_urls']
                item['second_titles'] = meta_3['second_titles']
                item['second_urls'] = meta_3['second_urls']
                item['second_id'] = meta_3['second_id']
                item['second_filename'] = meta_3['second_filename']
                item['third_titles'] = meta_3['third_titles']
                item['third_urls'] = meta_3['third_urls']
                item['third_id'] = meta_3['third_id']
                item['third_filename'] = meta_3['third_filename']
                item['fourth_titles'] = m[:m.rfind(" ")]+" "+fourth_titles[i]+" "+fourth_id[i]
                item['fourth_urls'] = fourth_urls
                item['fourth_id'] = fourth_id[i]
                item['fourth_filename'] = fourth_filename
                items.append(item)
        # 发送第四级url
        for item in items:
            yield scrapy.Request(url=item['fourth_urls'],meta={"meta_4":item},callback=self.fifth_parse)

    # 处理第五级数据名称,村、居委会
    def fifth_parse(self,response):
        print("处理第五级数据……")
        #提取每次Response的meta数据
        meta_4 = response.meta['meta_4']
        # 提取第五级的名称及id
        fifth_titles = response.xpath('//tr[@class="villagetr"]//td[3]/text()').extract()
        fifth_id = response.xpath('//tr[@class="villagetr"]//td[1]/text()').extract()
        items = []
        for i in range(0, len(fifth_titles)):
            # 因为最后一级没有url链接,所以可以判断本页的url地址和上次传的url地址是否一样
            if (response.url == meta_4['fourth_urls']):
                # 目录类似于:\Data\河北省\河北省 石家庄市\河北省 石家庄市 长安区 130102000000\河北省 石家庄市 长安区 建北街道办事处 130102001000\
                #           河北省 石家庄市 长安区 建北街道办事处 棉一社区居民委员会 130102001001
                # # 最后一级目录不应该出现上一级目录结尾的数字和最后一个空格,即: 130102001000,要切掉
                m = meta_4['fourth_titles']
                fifth_filename = meta_4['fourth_filename']+"/"+m[:m.rfind(" ")]+" "+fifth_titles[i]+" "+fifth_id[i]
                if (not os.path.exists(fifth_filename)):
                    os.makedirs(fifth_filename)
                item = StatsItem()
                # item['first_titles'] = meta_4['first_titles']
                # item['first_urls'] = meta_4['first_urls']
                # item['second_titles'] = meta_4['second_titles']
                # item['second_urls'] = meta_4['second_urls']
                # item['second_id'] = meta_4['second_id']
                # item['second_filename'] = meta_4['second_filename']
                item['third_titles'] = meta_4['third_titles']
                # item['third_urls'] = meta_4['third_urls']
                item['third_id'] = meta_4['third_id']
                # item['third_filename'] = meta_4['third_filename']
                item['fourth_titles'] = meta_4['fourth_titles']
                # item['fourth_urls'] =  meta_4['fourth_urls']
                item['fourth_id'] = meta_4['fourth_id']
                # item['fourth_filename'] = meta_4['fourth_filename']
                # item['fifth_filename'] = fifth_filename
                item['fifth_id'] = fifth_id[i]
                # 河北省 石家庄市 长安区 建北街道办事处 棉一社区居民委员会 130102001001
                item['fifth_titles'] = m[:m.rfind(" ")]+" "+fifth_titles[i]+" "+fifth_id[i]
                items.append(item)
                yield item

5.处理pipelines管道文件保存数据,可将结果保存到文件中(pipelines.py)

# -*- coding: utf-8 -*-
import json
from openpyxl import Workbook

# 转码操作,继承json.JSONEncoder的子类
class MyEncoder(json.JSONEncoder):
    def default(self, o):
        if isinstance(o, bytes):
            return str(o, encoding='utf-8')
        return json.JSONEncoder.default(self, o)
# 处理数据,将数据保存在本地的excel表中
class StatsPipeline(object):
        def __init__(self):
            # self.filename = open("stats.csv", "w", encoding="utf-8")
            self.wb = Workbook()
            self.ws = self.wb.active
            # 创建表头
            self.ws.append(['third_titles','third_id','fourth_titles','fourth_id','fifth_titles','fifth_id'])
        def process_item(self, item, spider):
            # text = json.dumps((dict(item)), ensure_ascii=False, cls=MyEncoder) + '\n'
            # self.filename.write(text)
            # 只取六项,可以结合情况修改,保存到excel表中
            text = [item['third_titles'],item['third_id'],item['fourth_titles'],item['fourth_id'],item['fifth_titles'],item['fifth_id']]
            self.ws.append(text)
            return item
        def close_spider(self, spider):
            self.wb.save('stats.xlsx')
            print("数据处理完毕,谢谢使用!")

6.配置settings文件(settings.py)

# Obey robots.txt rules,具体含义参照:https://www.cdsy.xyz/computer/programme/Python/241210/cd64912.html      
ROBOTSTXT_OBEY = False  
      
# Override the default request headers:添加User-Agent信息      
DEFAULT_REQUEST_HEADERS = {      
  'User-Agent': 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0);',      
  # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',      
  # 'Accept-Language': 'en',      
}  
      
# Configure item pipelines去掉下面注释,打开管道文件      
ITEM_PIPELINES = {      
     'Stats.pipelines.StatsPipeline': 300,
}  
      
# 还可以将日志存到本地文件中(可选添加设置)      
LOG_FILE = "stats.log"      
LOG_LEVEL = "DEBUG" 
# 包含打印信息也一起写进日志里
LOG_STDOUT = True

7.以上设置完毕,进行爬取:执行项目命令crawl,启动Spider:

scrapy crawl stats

效果图:

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐