1、创建Scrapy项目
- scrapy startproject Sina
2、进入项目目录,使用命令genspider创建Spider
- scrapy genspider sina sina.com.cn
3、定义要抓取的数据(处理items.py文件)
- # -*- coding: utf-8 -*-
- # 爬取新浪网分类资讯
- # 爬取新浪网导航页下所有大类、小类、小类里的子链接,以及子链接页面的新闻内容。
- import scrapy
-
- class SinaItem(scrapy.Item):
- # 大类的标题和url
- parentTitle = scrapy.Field()
- parentUrls = scrapy.Field()
-
- # 小类的标题和子url
- subTitle = scrapy.Field()
- subUrls = scrapy.Field()
-
- # 小类的目录存储路径
- subFilename = scrapy.Field()
-
- # 小类下的子链接
- sonUrls = scrapy.Field()
-
- # 文章的标题和内容
- head = scrapy.Field()
- content = scrapy.Field()
-
4、编写提取item数据的Spider(在spiders文件夹下:sina.py)
- # -*- coding: utf-8 -*-
- import scrapy
- import os
- from Sina.items import SinaItem
-
- class SinaSpider(scrapy.Spider):
- name = 'sina'
- allowed_domains = ['sina.com.cn']
- start_urls = ['http://news.sina.com.cn/guide/']
-
- def parse(self, response):
- items = []
- # 所有大类的url和标题
- parentUrls = response.xpath('//div[@id="tab01"]/div/h3/a/@href').extract()
- parentTitle = response.xpath('//div[@id="tab01"]/div/h3/a/text()').extract()
- # 所有小类的url和标题
- subUrls = response.xpath('//div[@id="tab01"]/div/ul/li/a/@href').extract()
- subTitle = response.xpath('//div[@id="tab01"]/div/ul/li/a/text()').extract()
-
- # 获取所有大类
- for i in range(0,len(parentTitle)):
- # 指定大类目录路径和目录名
- parentFilename = './Data/' + parentTitle[i]
- # 如果目录不存在则创建目录
- if(not os.path.exists(parentFilename)):
- os.makedirs(parentFilename)
-
- # 获取所有小类
- for j in range(0, len(subUrls)):
- item = SinaItem()
-
- # 保存大类的title和urls
- item['parentTitle'] = parentTitle[i]
- item['parentUrls'] = parentUrls[i]
-
- # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
- # 关于startswith()介绍参考:http://www.cdsy.xyz/python3/python3-string-startswith.html
- if_belong = subUrls[j].startswith(item['parentUrls'])
-
- # 如果属于本大类,将小类存储目录放在本大类的目录下
- if (if_belong):
- subFilename = parentFilename + '/' + subTitle[j]
- # 如果目录不存在,则创建
- if(not os.path.exists(subFilename)):
- os.makedirs(subFilename)
- # 保存小类的url、title和filename字段数据
- item['subUrls'] = subUrls[j]
- item['subTitle'] = subTitle[j]
- item['subFilename'] = subFilename
-
- items.append(item)
- # 发送每个小类url的Request请求,得到Response连同包含meta数据一同交给回调函数second_parse方法处理
- for item in items:
- yield scrapy.Request(url = item['subUrls'], meta={'meta_1':item},callback=self.second_parse)
- # 对于返回的小类url,再进行递归请求
- def second_parse(self,response):
- # 提取每次response的meta数据
- meta_1 = response.meta['meta_1']
- # 取出小类里所有子链接
- sonUrls = response.xpath('//a/@href').extract()
- items = []
- for i in range(0,len(sonUrls)):
- # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
- if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls'])
- # 如果属于本大类,获取字段值放在同一个item下便于传输
- if(if_belong):
- item = SinaItem()
- item['parentTitle'] = meta_1['parentTitle']
- item['parentUrls'] = meta_1['parentUrls']
- item['subTitle'] = meta_1['subTitle']
- item['subUrls'] = meta_1['subUrls']
- item['subFilename'] = meta_1['subFilename']
- item['sonUrls'] = sonUrls[i]
- items.append(item)
- # 发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据一同交给回调函数detail_parse方法处理
- for item in items:
- yield scrapy.Request(url=item['sonUrls'],meta={'meta_2':item},callback=self.detail_parse)
-
- # 数据解析方法,获取文章标题和内容
- def detail_parse(self,response):
- item = response.meta['meta_2']
- content = ''
- # 文章标题
- head = response.xpath(('//h1[@class="main-title"]/text()')).extract()
- # 文章内容,多个p标签组成的列表
- content_list = response.xpath('//div[@class="article"]/p/text()').extract()
- # 需要将p标签内容拼接在一起
- for content_one in content_list:
- content += content_one
- item['head'] = head
- item['content'] = content
-
- yield item
-
5、处理pipelines管道文件保存数据,可将结果保存到文件中(pipelines.py)
- # -*- coding: utf-8 -*-
-
- class SinaPipeline(object):
- def process_item(self, item, spider):
- sonUrls = item['sonUrls']
- # 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式
- filename = sonUrls[7:-6].replace("/","_")
- filename += ".txt"
- with open(item['subFilename']+ "/" + filename,'w',encoding='utf-8')as f:
- f.write(item['content'])
- return item
-
6、配置settings文件(settings.py)
- # Obey robots.txt rules,具体含义参照:https://www.cdsy.xyz/computer/programme/Python/241210/cd64912.html
- ROBOTSTXT_OBEY = False
-
- # 下载延迟
- DOWNLOAD_DELAY = 2
- # Override the default request headers:添加User-Agent信息
- DEFAULT_REQUEST_HEADERS = {
- 'User-Agent': 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0);',
- # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
- # 'Accept-Language': 'en',
- }
-
- # Configure item pipelines去掉下面注释,打开管道文件
- ITEM_PIPELINES = {
- 'Sina.pipelines.SinaPipeline': 300,
- }
-
- # 还可以将日志存到本地文件中(可选添加设置)
- LOG_FILE = "sina.log"
- LOG_LEVEL = "DEBUG"
- # 包含打印信息也一起写进日志里
- LOG_STDOUT = True
7.以上设置完毕,进行爬取:执行项目命令crawl,启动Spider:
- scrapy crawl sina