您当前的位置:首页 > 计算机 > 编程开发 > Python

scrapy爬取新浪网导航页所有大类、小类、小类里的子链接,以及子链接页面的新闻内容

时间:12-10来源:作者:点击数:

1、创建Scrapy项目

scrapy startproject Sina

2、进入项目目录,使用命令genspider创建Spider

scrapy genspider sina sina.com.cn

3、定义要抓取的数据(处理items.py文件)

# -*- coding: utf-8 -*-
# 爬取新浪网分类资讯
# 爬取新浪网导航页下所有大类、小类、小类里的子链接,以及子链接页面的新闻内容。
import scrapy

class SinaItem(scrapy.Item):
    # 大类的标题和url
    parentTitle = scrapy.Field()
    parentUrls = scrapy.Field()

    # 小类的标题和子url
    subTitle = scrapy.Field()
    subUrls = scrapy.Field()

    # 小类的目录存储路径
    subFilename = scrapy.Field()

    # 小类下的子链接
    sonUrls = scrapy.Field()

    # 文章的标题和内容
    head = scrapy.Field()
    content = scrapy.Field()

4、编写提取item数据的Spider(在spiders文件夹下:sina.py)

# -*- coding: utf-8 -*-
import scrapy
import os
from Sina.items import SinaItem

class SinaSpider(scrapy.Spider):
    name = 'sina'
    allowed_domains = ['sina.com.cn']
    start_urls = ['http://news.sina.com.cn/guide/']

    def parse(self, response):
        items = []
        # 所有大类的url和标题
        parentUrls = response.xpath('//div[@id="tab01"]/div/h3/a/@href').extract()
        parentTitle = response.xpath('//div[@id="tab01"]/div/h3/a/text()').extract()
        # 所有小类的url和标题
        subUrls = response.xpath('//div[@id="tab01"]/div/ul/li/a/@href').extract()
        subTitle = response.xpath('//div[@id="tab01"]/div/ul/li/a/text()').extract()

        # 获取所有大类
        for i in range(0,len(parentTitle)):
            # 指定大类目录路径和目录名
            parentFilename = './Data/' + parentTitle[i]
            # 如果目录不存在则创建目录
            if(not os.path.exists(parentFilename)):
                os.makedirs(parentFilename)

            # 获取所有小类
            for j in range(0, len(subUrls)):
                item = SinaItem()

                # 保存大类的title和urls
                item['parentTitle'] = parentTitle[i]
                item['parentUrls'] = parentUrls[i]

                # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
                # 关于startswith()介绍参考:http://www.cdsy.xyz/python3/python3-string-startswith.html
                if_belong = subUrls[j].startswith(item['parentUrls'])

                # 如果属于本大类,将小类存储目录放在本大类的目录下
                if (if_belong):
                    subFilename = parentFilename + '/' + subTitle[j]
                    # 如果目录不存在,则创建
                    if(not os.path.exists(subFilename)):
                        os.makedirs(subFilename)
                    # 保存小类的url、title和filename字段数据
                    item['subUrls'] = subUrls[j]
                    item['subTitle'] = subTitle[j]
                    item['subFilename'] = subFilename

                    items.append(item)
        # 发送每个小类url的Request请求,得到Response连同包含meta数据一同交给回调函数second_parse方法处理
        for item in items:
            yield scrapy.Request(url = item['subUrls'], meta={'meta_1':item},callback=self.second_parse)
    # 对于返回的小类url,再进行递归请求
    def second_parse(self,response):
        # 提取每次response的meta数据
        meta_1 = response.meta['meta_1']
        # 取出小类里所有子链接
        sonUrls = response.xpath('//a/@href').extract()
        items = []
        for i in range(0,len(sonUrls)):
            # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
            if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls'])
            # 如果属于本大类,获取字段值放在同一个item下便于传输
            if(if_belong):
                item = SinaItem()
                item['parentTitle'] = meta_1['parentTitle']
                item['parentUrls'] = meta_1['parentUrls']
                item['subTitle'] = meta_1['subTitle']
                item['subUrls'] = meta_1['subUrls']
                item['subFilename'] = meta_1['subFilename']
                item['sonUrls'] = sonUrls[i]
                items.append(item)
        # 发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据一同交给回调函数detail_parse方法处理
        for item in items:
            yield scrapy.Request(url=item['sonUrls'],meta={'meta_2':item},callback=self.detail_parse)

    # 数据解析方法,获取文章标题和内容
    def detail_parse(self,response):
        item = response.meta['meta_2']
        content = ''
        # 文章标题
        head = response.xpath(('//h1[@class="main-title"]/text()')).extract()
        # 文章内容,多个p标签组成的列表
        content_list = response.xpath('//div[@class="article"]/p/text()').extract()
        # 需要将p标签内容拼接在一起
        for content_one in content_list:
            content += content_one
        item['head'] = head
        item['content'] = content

        yield item

5、处理pipelines管道文件保存数据,可将结果保存到文件中(pipelines.py)

# -*- coding: utf-8 -*-

class SinaPipeline(object):
    def process_item(self, item, spider):
        sonUrls = item['sonUrls']
        # 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式
        filename = sonUrls[7:-6].replace("/","_")
        filename += ".txt"
        with open(item['subFilename']+ "/" + filename,'w',encoding='utf-8')as f:
            f.write(item['content'])
        return item

6、配置settings文件(settings.py)

# Obey robots.txt rules,具体含义参照:https://www.cdsy.xyz/computer/programme/Python/241210/cd64912.html
ROBOTSTXT_OBEY = False 

# 下载延迟
DOWNLOAD_DELAY = 2
# Override the default request headers:添加User-Agent信息
DEFAULT_REQUEST_HEADERS = {
  'User-Agent': 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0);',
  # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  # 'Accept-Language': 'en',
}
 
# Configure item pipelines去掉下面注释,打开管道文件
ITEM_PIPELINES = {
   'Sina.pipelines.SinaPipeline': 300,
}

# 还可以将日志存到本地文件中(可选添加设置)
LOG_FILE = "sina.log"
LOG_LEVEL = "DEBUG"
# 包含打印信息也一起写进日志里
LOG_STDOUT = True

7.以上设置完毕,进行爬取:执行项目命令crawl,启动Spider:

scrapy crawl sina
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐