Yandex在2016年6月15日开源了一个数据分析的数据库,名字叫做ClickHouse,这对保守俄罗斯人来说是个特大事。更让人惊讶的是,这个列式存储数据库的跑分要超过很多流行的商业MPP数据库软件,例如Vertica。如果你没有听过Vertica,那你一定听过 Michael Stonebraker,2014年图灵奖的获得者,PostgreSQL和Ingres发明者(Sybase和SQL Server都是继承Ingres而来的), Paradigm4和SciDB的创办者。Michael Stonebraker于2005年创办Vertica公司,后来该公司被HP收购,HP Vertica成为MPP列式存储商业数据库的高性能代表,Facebook就购买了Vertica数据用于用户行为分析。简单的说,ClickHouse作为分析型数据库,有三大特点:一是跑分快,二是功能多,三是文艺范
官网地址:https://clickhouse.tech/
官方文档:https://clickhouse.tech/docs/zh/single/
ClickHouse没有官方的Python接口,有个第三方的库,叫clickhouse-driver,GitHub地址是:mymarilyn/clickhouse-driver: ClickHouse Python Driver with native interface support
安装:
pip install clickhouse-driver
使用方法如下:
from clickhouse_driver import Client
client = Client(host='localhost', database='default', user='default', password='')
client.execute('SHOW DATABASES')
==========================================================
>>> from clickhouse_driver import connect
>>>
>>> conn = connect('clickhouse://localhost')
>>> cursor = conn.cursor()
>>>
>>> cursor.execute('SHOW TABLES')
>>> cursor.fetchall()
[('test',)]
安装
pip install clickhouse-sqlalchemy==0.1.4
pip install sqlalchemy==1.3.19
使用
# -*- coding:utf-8 -*-
from clickhouse_sqlalchemy import make_session
from sqlalchemy import create_engine
conf = {
"user": "default",
"password": "",
"server_host": "47.104",
"port": "8123",
"db": "test"
}
connection = 'clickhouse://{user}:{password}@{server_host}:{port}/{db}'.format(**conf)
engine = create_engine(connection, pool_size=100, pool_recycle=3600, pool_timeout=20)
def get_session(engine):
return make_session(engine)
def execute(sql):
session = get_session(engine)
cursor = session.execute(sql)
try:
fields = cursor._metadata.keys
return [dict(zip(fields, item)) for item in cursor.fetchall()]
finally:
cursor.close()
session.close()
query='SHOW TABLES'
result=execute(query)
print(result)
github:https://github.com/kszucs/pandahouse
安装
pip install pandahouse
Writing dataframe to clickhouse
from pandahouse.core import to_clickhouse
connection = {'host': 'http://clickhouse-host:8123',
'database': 'test','user':'user' ,'password':'password','encoding':'utf-8'}
affected_rows = to_clickhouse(df, table='name', connection=connection)
Reading arbitrary clickhouse query to pandas
from pandahouse.core import read_clickhouse
df = read_clickhouse('SELECT * FROM {db}.table', index_col='id',
connection=connection)
github:https://github.com/lee19840806/clickhouse2pandas
安装
pip install clickhouse2pandas
使用
import clickhouse2pandas as ch2pd
connection_url = 'http://user:password@clickhouse_host:8123'
query = 'select * from system.numbers limit 1000000'
df = ch2pd.select(connection_url, query)
# df is a pandas dataframe converted from ClickHouse query result
API Reference
clickhouse2pandas.select(connection_url, query = None, convert_to = 'DataFrame', settings = None)
ClickHouse表引擎到底怎么选:
https://www.cdsy.xyz/computer/soft/database/other_database/240827/cd63085.html
clickHouse可视化查询工具:
https://www.cdsy.xyz/computer/soft/database/other_database/240827/cd63086.html