您当前的位置:首页 > 计算机 > 编程开发 > Python

使用Python查询任意地区历史天气并生成气温走势折线图

时间:08-18来源:作者:点击数:
城东书院 www.cdsy.xyz

说明

有时候我们想查询一个地方的历史气温用来预测今年的气温,自己去互联网查询又太麻烦,闲来无事写了个查询代码

源代码如下

第一步,运行一次下面的代码,用于获取地区对应的代码,会自动保存为 “city_data.csv” 文件,用于第二步的文件调用

import os
import csv
import requests
from lxml import etree

# 目标主网址
main_url = "https://lishi.tianqi.com/"

# 设置请求头
headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0',
}

if not os.path.exists('city_data.csv'):
    # 获取不同城市对应的网址
    try:
        response = requests.get(url=main_url, headers=headers)
        html = etree.HTML(response.text)

        city_name_list = html.xpath("//td/ul/li/a/text()")
        city_url_list = html.xpath("//td/ul/li/a/@href")

        with open('city_data.csv', mode='w', encoding='utf-8-sig', newline='') as f:
            writer = csv.writer(f)
            writer.writerow(['城市', '代码'])
            for n, u in zip(city_name_list, city_url_list):
                writer.writerow([n, u.split('/')[0]])
                print(n, u.split('/')[0])
    except Exception as e:
        print(e)

else:
    print('城市数据已存在')

第二步:输入地区名和日期,开始查询

代码运行结束之后,会在同目录下生成一个html文件,在浏览器打开即可看见折线图

import requests
import csv
import re
import os
from lxml import etree
import pyecharts.options as opts
from pyecharts.charts import Line

# 设置请求头
headers= {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0',
}
def input_data():
    """输入地点,时间"""
    city = input("请输入查询城市:")
    month = input("请输入查询月份(格式:202307):")
    return city, month

def get_date_url(city, month):
    """获取当月日期地址"""
    if os.path.exists('city_data.csv'):
        with open('city_data.csv', mode='r', encoding='utf-8') as f:
            reader = csv.reader(f)
            for row in reader:
                if city == row[0]:
                    city_id = row[1]
    month_url = f"https://lishi.tianqi.com/{city_id}/{month}.html"
    return month_url

def extract_numbers(string):
    """提取字符串中的数字"""
    numbers = re.findall(r'\d+', string)[0]
    return float(numbers)

def spider_weather(date_url, city, month):
    try:
        response = requests.get(url=date_url, headers=headers)
        html = etree.HTML(response.text)
        tree = html.xpath('/html/body/div[7]/div[1]/div[4]/ul/li')
        date_name_list = []
        high_temperatures = []
        low_temperatures = []
        weathers = []
        for i in tree:
            date = i.xpath('./div[1]/text()')[0].split(' ')[0]
            high_temperature = extract_numbers(i.xpath('./div[2]/text()')[0])
            low_temperature = extract_numbers(i.xpath('./div[3]/text()')[0])
            weather = i.xpath('./div[4]/text()')[0]
            wind = i.xpath('./div[5]/text()')[0]
            print(date, high_temperature, low_temperature, weather, wind)
            date_name_list.append(date)
            high_temperatures.append(high_temperature)
            low_temperatures.append(low_temperature)
            weathers.append(weather)

        line = (
            Line(init_opts=opts.InitOpts(width="1200px", height="600px",page_title='月份气温折线图'))
            .add_xaxis(xaxis_data=date_name_list)
            .add_yaxis(
                series_name="最高气温",
                y_axis=high_temperatures,
                markpoint_opts=opts.MarkPointOpts(
                    data=[
                        opts.MarkPointItem(type_="max", name="最大值"),
                    ]
                ),
                markline_opts=opts.MarkLineOpts(
                    data=[opts.MarkLineItem(type_="average", name="平均值")]
                ),
            )
            .add_yaxis(
                series_name="最低气温",
                y_axis=low_temperatures,
                markpoint_opts=opts.MarkPointOpts(
                    data=[opts.MarkPointItem(type_="min", name="最小值")]
                ),
                markline_opts=opts.MarkLineOpts(
                    data=[
                        opts.MarkLineItem(type_="average", name="平均值"),
                    ]
                ),
            )
            .set_global_opts(
                # 设置主副标题
                title_opts=opts.TitleOpts(title=f"{city}地区{month[0:4]}年{month[4:]}月气温走势折线图", subtitle=f"{city}"),
                tooltip_opts=opts.TooltipOpts(trigger="axis"),
                toolbox_opts=opts.ToolboxOpts(is_show=True, feature=opts.ToolBoxFeatureOpts(save_as_image=opts.ToolBoxFeatureSaveAsImageOpts(pixel_ratio=3, type_='jpg', background_color='#fff'))),
                xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False, name='日期', min_=0, max_=len(date_name_list), axisline_opts=opts.AxisLineOpts(symbol=['none', 'arrow'])),
                datazoom_opts=opts.AxisLineOpts(),

            )

        )
        line.render(f"{city}地区{month[0:4]}年{month[4:]}月气温走势折线图.html")
    except Exception as e:
        print(e)

def main():
    city, month = input_data()
    month_url = get_date_url(city, month)
    spider_weather(month_url, city, month)

if __name__ == '__main__':
    main()

效果图如下

城东书院 www.cdsy.xyz
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门
本栏推荐