1.基于图片对比计算缺口位置


-
-
- from PIL import Image
-
-
- class SlideCrack(object):
- def __init__(self, gap_img, bg):
- self.gap_img = gap_img
- self.bg = bg
-
- @staticmethod
- def pixel_is_equal(image1, image2, x, y):
- """
- 判断两张图片的像素是否相等,不想等即为缺口位置
- :param image1:
- :param image2:
- :param x: x坐标
- :param y: y 坐标
- :return:
- """
-
- pixel1 = image1.load()[x, y]
- pixel2 = image2.load()[x, y]
- threshold = 60
- if abs(pixel1[0]-pixel2[0]) < threshold and abs(pixel1[1]-pixel2[1]) < threshold and abs(pixel1[2]-pixel2[2]) <threshold:
- return True
- else:
- return False
-
- def get_gap(self, image1, image2):
- """
- 获取缺口位置
- :param image1:完整图片
- :param image2: 带缺口的图片
- :return:
- """
- left = 60
- for i in range(left, image1.size[0]):
- for j in range(image1.size[1]):
- if not self.pixel_is_equal(image1, image2, i, j):
- left = i
- return left
- return left
-
- def run(self):
- image1 = Image.open(self.bg)
- image2 = Image.open(self.gap_img)
-
- gap = self.get_gap(image1, image2)
- print(gap)
-
-
- if __name__ == "__main__":
- img1 = "img/1_1.png"
- img2 = "img/1_2.png"
- gt = SlideCrack(img1, img2)
- gt.run()
-
2.基于边界对比计算缺口位置



-
-
- import cv2
-
-
- class SlideCrack(object):
- def __init__(self, gap, bg, out):
- """
- init code
- :param gap: 缺口图片
- :param bg: 背景图片
- :param out: 输出图片
- """
- self.gap = gap
- self.bg = bg
- self.out = out
-
- @staticmethod
- def clear_white(img):
-
- img = cv2.imread(img)
- rows, cols, channel = img.shape
- min_x = 255
- min_y = 255
- max_x = 0
- max_y = 0
- for x in range(1, rows):
- for y in range(1, cols):
- t = set(img[x, y])
- if len(t) >= 2:
- if x <= min_x:
- min_x = x
- elif x >= max_x:
- max_x = x
-
- if y <= min_y:
- min_y = y
- elif y >= max_y:
- max_y = y
- img1 = img[min_x:max_x, min_y: max_y]
- return img1
-
- def template_match(self, tpl, target):
- th, tw = tpl.shape[:2]
- result = cv2.matchTemplate(target, tpl, cv2.TM_CCOEFF_NORMED)
-
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
- tl = max_loc
- br = (tl[0] + tw, tl[1] + th)
-
-
-
-
-
-
- cv2.rectangle(target, tl, br, (0, 0, 255), 2)
- cv2.imwrite(self.out, target)
- return tl[0]
-
- @staticmethod
- def image_edge_detection(img):
- edges = cv2.Canny(img, 100, 200)
- return edges
-
- def discern(self):
- img1 = self.clear_white(self.gap)
- img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
- slide = self.image_edge_detection(img1)
-
- back = cv2.imread(self.bg, 0)
- back = self.image_edge_detection(back)
-
- slide_pic = cv2.cvtColor(slide, cv2.COLOR_GRAY2RGB)
- back_pic = cv2.cvtColor(back, cv2.COLOR_GRAY2RGB)
- x = self.template_match(slide_pic, back_pic)
-
- print(x)
-
-
- if __name__ == "__main__":
-
- image1 = "img/1_1.png"
-
- image2 = "img/1_2.png"
-
-
- image3 = "img/1_3.png"
- sc = SlideCrack(image1, image2, image3)
- sc.discern()
-