一、基础操作
1 、链式比较
- i = 3
- print(1 < i < 3) # False
- print(1 < i <= 3) # True
-
2 、不用else和if实现计算器
- from operator import *
-
- def calculator(a, b, k):
- return {
- '+': add,
- '-': sub,
- '*': mul,
- '/': truediv,
- '**': pow
- }[k](a, b)
-
- calculator(1, 2, '+')
- calculator(3, 4, '**')
-
3 、函数链
- from operator import (add, sub)
-
- def add_or_sub(a, b, oper):
- return (add if oper == '+' else sub)(a, b)
-
- add_or_sub(1, 2, '-')
-
4 、求字符串的字节长度
- def str_byte_len(mystr):
- return (len(mystr.encode('utf-8')))
-
- str_byte_len('i love python') # 13(个字节)
- str_byte_len('字符') # 6(个字节)
-
5 、寻找第n次出现位置
- def search_n(s, c, n):
- size = 0
- for i, x in enumerate(s):
- if x == c:
- size += 1
- if size == n:
- return i
- return -1
-
- print(search_n("fdasadfadf", "a", 3))
- print(search_n("fdasadfadf", "a", 30))
-
6 、去掉最高最低求平均
- def score_mean(lst):
- lst.sort()
- lst2=lst[1:(len(lst)-1)]
- return round((sum(lst2)/len(lst2)),2)
-
- score_mean([9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]) # 9.07
-
7 、交换元素
- def swap(a, b):
- return b, a
-
- swap(1, 0) # (0,1)
-
二、基础算法
1 、二分搜索
- def binarySearch(arr, left, right, x):
- while left <= right:
- mid = int(left + (right - left) / 2); # 找到中间位置。求中点写成(left+right)/2更容易溢出,所以不建议这样写
-
- # 检查x是否出现在位置mid
- if arr[mid] == x:
- print('found %d 在索引位置%d 处' %(x,mid))
- return mid
-
- # 假如x更大,则不可能出现在左半部分
- elif arr[mid] < x:
- left = mid + 1 #搜索区间变为[mid+1,right]
- print('区间缩小为[%d,%d]' %(mid+1,right))
-
- elif x<arr[mid]:
- right = mid - 1 #搜索区间变为[left,mid-1]
- print('区间缩小为[%d,%d]' %(left,mid-1))
-
- return -1
-
2 、距离矩阵
- x,y = mgrid[0:5,0:5]
- list(map(lambda xe,ye: [(ex,ey) for ex, ey in zip(xe, ye)], x,y))
- [[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)],
- [(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)],
- [(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)],
- [(3, 0), (3, 1), (3, 2), (3, 3), (3, 4)],
- [(4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]]
-
三、列表
1、打印乘法表
- for i in range(1,10):
- for j in range(1,i+1):
- print('{0}*{1}={2}'.format(j,i,j*i),end="\t")
- print()
-
- 结果:
-
- 1*1=1
- 1*2=2 2*2=4
- 1*3=3 2*3=6 3*3=9
- 1*4=4 2*4=8 3*4=12 4*4=16
- 1*5=5 2*5=10 3*5=15 4*5=20 5*5=25
- 1*6=6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36
- 1*7=7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49
- 1*8=8 2*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64
- 1*9=9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81
-
2、 嵌套数组完全展开
- from collections.abc import *
-
- def flatten(input_arr, output_arr=None):
- if output_arr is None:
- output_arr = []
- for ele in input_arr:
- if isinstance(ele, Iterable):
- flatten(ele, output_arr)
- else:
- output_arr.append(ele)
- return output_arr
-
- flatten([[1,2,3],[4,5]], [6,7])
-
3、 将list等分为子组
- from math import ceil
-
- def divide(lst, size):
- if size <= 0:
- return [lst]
- return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]
-
- r = divide([1, 3, 5, 7, 9], 2) # [[1, 3], [5, 7], [9]]
-
4、 生成fibonacci序列前n项
- def fibonacci(n):
- if n <= 1:
- return [1]
- fib = [1, 1]
- while len(fib) < n:
- fib.append(fib[len(fib) - 1] + fib[len(fib) - 2])
- return fib
-
- fibonacci(5)
-
5 、过滤掉各种空值
- def filter_false(lst):
- return list(filter(bool, lst))
-
- filter_false([None, 0, False, '', [], 'ok', [1, 2]])
-
- 6 返回列表头元素
-
- def head(lst):
- return lst[0] if len(lst) > 0 else None
-
- head([])
- head([3, 4, 1])
-
7、 返回列表尾元素
- def tail(lst):
- return lst[-1] if len(lst) > 0 else None
-
- print(tail([]))
- print(tail([3, 4, 1]))
-
8 、对象转换为可迭代类型
- from collections.abc import Iterable
-
- def cast_iterable(val):
- return val if isinstance(val, Iterable) else [val]
-
- cast_iterable('foo')
- cast_iterable(12)
- cast_iterable({'foo': 12})
-
9 、求更长列表
- def max_length(*lst):
- return max(*lst, key=lambda v: len(v))
-
- r = max_length([1, 2, 3], [4, 5, 6, 7], [8])
-
10、 出现最多元素
- def max_frequency(lst):
- return max(lst, default='列表为空', key=lambda v: lst.count(v))
-
- lst = [1, 3, 3, 2, 1, 1, 2]
- max_frequency(lst) # 1
-
11、求多个列表的最大值
- def max_lists(*lst):
- return max(max(*lst, key=lambda v: max(v)))
-
- max_lists([1, 2, 3], [6, 7, 8], [4, 5])
-
12、 求多个列表的最小值
- def min_lists(*lst):
- return min(min(*lst, key=lambda v: max(v)))
-
- min_lists([1, 2, 3], [6, 7, 8], [4, 5])
-
13、 检查list是否有重复元素
- def has_duplicates(lst):
- return len(lst) == len(set(lst))
-
- x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]
- y = [1, 2, 3, 4, 5]
- has_duplicates(x)
- has_duplicates(y)
-
14、 求列表中所有重复元素
- from collections import Counter
-
- def find_all_duplicates(lst):
- c = Counter(lst)
- return list(filter(lambda k: c[k] > 1, c))
-
- find_all_duplicates([1, 2, 2, 3, 3, 3]) # [2,3]
-
15、 列表反转
- def reverse(lst):
- return lst[::-1]
-
- reverse([1, -2, 3, 4, 1, 2])# [2, 1, 4, 3, -2, 1]
-
16、 浮点数等差数列
- def rang(start, stop, n):
- start,stop,n = float('%.2f' % start), float('%.2f' % stop),int('%.d' % n)
- step = (stop-start)/n
- lst = [start]
- while n > 0:
- start,n = start+step,n-1
- lst.append(round((start), 2))
- return lst
-
- rang(1, 8, 10) # [1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]
-
四、字典
1 、字典值最大的键值对列表
- def max_pairs(dic):
- if len(dic) == 0:
- return dic
- max_val = max(map(lambda v: v[1], dic.items()))
- return [item for item in dic.items() if item[1] == max_val]
-
- max_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})# [('b', 5), ('d', 5)]
-
2、 字典值最小的键值对列表
- def min_pairs(dic):
- if len(dic) == 0:
- return []
- min_val = min(map(lambda v: v[1], dic.items()))
- return [item for item in dic.items() if item[1] == min_val]
-
-
- min_pairs({})
-
- r = min_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})
- print(r)
-
3、 合并两个字典
- def merge_dict2(dic1, dic2):
- return {**dic1, **dic2}
-
- merge_dict({'a': 1, 'b': 2}, {'c': 3})
-
- 4 求字典前n个最大值
-
- from heapq import nlargest
-
-
- def topn_dict(d, n):
- return nlargest(n, d, key=lambda k: d[k])
-
- topn_dict({'a': 10, 'b': 8, 'c': 9, 'd': 10}, 3)
-
5、 求最小键值对
- d={'a':-10,'b':5, 'c':3,'d':5}
- min(d.items(),key=lambda x:x[1])
-
五、集合
1 、互为变位词
- from collections import Counter
-
- def anagram(str1, str2):
- return Counter(str1) == Counter(str2)
-
- anagram('eleven+two', 'twelve+one')
- anagram('eleven', 'twelve')
-