原图如下。看不清细节,想放大局部图像。
换了横坐标。
原图
截取部分图像
- import matplotlib.pyplot as plt
- import numpy as np
- import h5py
-
- if __name__ == '__main__':
- f = h5py.File("data.hdf5", "r")
- keys = f.keys()
- pulse = []
- time = []
- for e in f['pulse']:
- pulse.append(e)
- for e in f['time']:
- time.append(e)
- print("the len of pulse is %d" % (len(pulse)))
- print("the len of time is %d" % (len(time)))
-
- pulse = np.array(pulse)
-
- plt.figure()
-
- # # 时间为横轴,单位转换复杂 不知道抽样频率。 如果以样本数量为横轴,刚好对应
- # plt.plot(time, pulse)
- # plt.xlabel('time') # 时间60s
- # plt.ylabel('pulse')
- # plt.title('time-pulse') # 添加图片标题
-
- # # 以样本数量为横轴,刚好对应
- # plt.plot(np.arange(len(pulse)), pulse)
- # plt.xlabel('Number of samples') # 样本数量 len(pulse)=len(time)
- # plt.ylabel('pulse')
- # plt.title('Number of samples-pulse') # 添加图片标题
-
- #显示部分图像
- # plt.plot(time[100:2001], pulse[100:2001])
- # plt.xlabel('time')
- plt.plot(np.arange(len(pulse))[100:2001], pulse[100:2001])
- plt.xlabel('Number of samples')
-
- plt.ylabel('pulse')
- plt.title('Number of samples-pulse') # 添加图片标题
-
- plt.show()
- exit()
-
- # -*- coding: utf-8 -*-
- # 画放大子图
- import h5py
- import numpy as np
- import matplotlib.pyplot as plt
- from mpl_toolkits.axes_grid1.inset_locator import mark_inset
- from mpl_toolkits.axes_grid1.inset_locator import inset_axes
-
-
- # 准备数据
- f = h5py.File("data.hdf5", "r")
- keys = f.keys()
- pulse = []
- time = []
- for e in f['pulse']:
- pulse.append(e)
- for e in f['time']:
- time.append(e)
-
- # x1 = time
- # y1 = pulse
- x = np.arange(len(pulse))
- y = np.array(pulse)
-
- # 绘图
- fig, ax = plt.subplots(1, 1, figsize=(6, 10))
- ax.plot(x, y, 'r', label='pulse') # 画线并添加图例legend
- # 翻阅matplotlib的官方API手册发现ax根本没有title这个接口,正确的接口是set_title。所以,ax.title → ax.set_title
- ax.set_title("Number of samples_pulse")
-
- # 嵌入绘制局部放大图的坐标系
- axins = inset_axes(ax, width="40%", height="30%", loc='lower left',
- bbox_to_anchor=(0.5, 0.1, 1, 1),
- bbox_transform=ax.transAxes)
-
- # # 在子坐标系中绘制原始数据
- axins.plot(x, y, 'r')
-
- # 设置放大区间
- zone_left = 2000
- zone_right = 2800
-
- # 坐标轴的扩展比例(根据实际数据调整)
- x_ratio = 1.0 # x轴显示范围的扩展比例
- y_ratio = 0.3 # y轴显示范围的扩展比例
-
- # X轴的显示范围
- xlim0 = x[zone_left] - (x[zone_right] - x[zone_left]) * x_ratio
- xlim1 = x[zone_right] + (x[zone_right] - x[zone_left]) * x_ratio
-
- # # Y轴的显示范围
- y = np.hstack(y[zone_left:zone_right])
- ylim0 = np.min(y) - (np.max(y) - np.min(y)) * y_ratio
- ylim1 = np.max(y) + (np.max(y) - np.min(y)) * y_ratio
-
- # 调整子坐标系的显示范围
- axins.set_xlim(xlim0, xlim1)
- axins.set_ylim(ylim0, ylim1)
-
- # 建立父坐标系与子坐标系的连接线
- # loc1 loc2: 坐标系的四个角
- # 1 (右上) 2 (左上) 3(左下) 4(右下)
- mark_inset(ax, axins, loc1=3, loc2=1, fc="none", ec='k', lw=1)
-
- # 显示
- plt.show()
-
-
另一篇类似文章
- plt.xlim(0, 0.3)
-