2025年3月31日 星期一 乙巳(蛇)年 正月初一 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > Python

scrapy抓取贝壳找房租房数据

时间:03-29来源:作者:点击数:30

链接:https://jn.zu.ke.com/zufang

首先我们使用scrapy startproject Beike 这个命令创建一个scrapy爬虫项目,接着我们用pycharm打开项目,完善item

在这里插入图片描述

接着我们找到setting文件,把ROBOTSTXT_OBEY = True,注释掉,或删除,表示我们不遵守协议

在这里插入图片描述

设置请求头,伪装成浏览器,不设置直接识别scrapy爬虫框架,直接把你机器拉入黑名单

在这里插入图片描述

我们抓取的是页面上的信息字段

在这里插入图片描述

我们明确了item以后,我们开始一个scrapy爬虫项目,使用命令: scrapy genspider beike jn.zu.ke.com

beike ------ 是爬虫名字

beike jn.zu.ke.com – domain

接下来我们先编写爬虫文件先写解析列表页面,还有详情页面,我们先不进行翻页,一步一步实现:

代码如下:

  • # -*- coding: utf-8 -*-
  • import scrapy
  • from Beike.items import BeikeItem
  • import copy
  • class BeikeSpider(scrapy.Spider):
  • name = 'beike'
  • allowed_domains = ['jn.zu.ke.com']
  • start_urls = ['https://jn.zu.ke.com/zufang']
  • page = 2
  • def parse(self, response):
  • print(response.url)
  • node_list = response.xpath('//div[@class="content__list--item--main"]')
  • print(len(node_list))
  • item = BeikeItem()
  • for node in node_list:
  • item["title"] = node.xpath("./p[1]/a/text()").extract_first().strip()
  • item["link"] = response.urljoin(node.xpath("./p[1]/a/@href").extract_first().strip())
  • item["address"] = node.xpath("./p[2]/a[3]/text()").extract_first().strip()
  • item["big"] = node.xpath("./p[2]/text()[5]").extract_first().strip()
  • item["where"] = node.xpath("./p[2]/text()[6]").extract_first().strip()
  • item["how"] = node.xpath("./p[2]/text()[7]").extract_first().strip()
  • item["price"] = node.xpath(
  • './span[@class="content__list--item-price"]/em/text()').extract_first().strip() + '元/月'
  • yield scrapy.Request(
  • url=item["link"],
  • callback=self.detail_parse,
  • meta={"item": copy.deepcopy(item)},
  • dont_filter=True
  • )
  • def detail_parse(self, response):
  • item = response.meta['item']
  • item["name"] = response.xpath('//*[@id="aside"]/div[2]/div[2]/div[1]/span/text()').extract_first()
  • print(item["title"])
  • yield item

因为翻页是动态加载的,我们就直接拼接下一页链接

第二页:https://jn.zu.ke.com/zufang/pg2/#contentList

第三页:https://jn.zu.ke.com/zufang/pg3/#contentList

发现变化的是pg后面的数字,构建代码:

  • if self.page < 100:
  • next_url = 'https://jn.zu.ke.com/zufang/pg{}/#contentList'.format(self.page)
  • self.page += 1
  • yield scrapy.Request(next_url, callback=self.parse)

交给scrapy框架进行请求解析,昨晚有一个bug一直困扰,就是解析列表页数据正常,但是解析详情页就出现了问题,最后打印数据是一样的,找了好久,然后通过百度找到了解决方法那就是导入copy模块,将列表的item传递使用深拷贝一下就好了meta={“item”: copy.deepcopy(item)},切记爬虫编写时,一定要注意对应好item字段,否则报错注意一定要打开dont_fillter,不过滤,不打开了就会出现一个bug,当前页面会referer到上一页,数据一样就像这样

在这里插入图片描述

我们写完spider爬虫后,运行爬虫 scrapy crawl beike 查看效果:

在这里插入图片描述

下一步我们我们将数据保存csv,使用pipline管道,将数据写入

在这里插入图片描述

注意:一定要在setting文件中注册管道后面数值越小,越优先

在这里插入图片描述
保存csv效果
在这里插入图片描述

全部代码:

爬虫item文件代码

  • # -*- coding: utf-8 -*-
  • # Define here the models for your scraped items
  • #
  • # See documentation in:
  • # https://docs.scrapy.org/en/latest/topics/items.html
  • import scrapy
  • class BeikeItem(scrapy.Item):
  • # define the fields for your item here like:
  • # name = scrapy.Field()
  • title = scrapy.Field()
  • link = scrapy.Field()
  • address = scrapy.Field()
  • big = scrapy.Field()
  • where = scrapy.Field()
  • how = scrapy.Field()
  • price = scrapy.Field()
  • name = scrapy.Field()

spider爬虫文件:

  • # -*- coding: utf-8 -*-
  • import scrapy
  • from Beike.items import BeikeItem
  • import copy
  • class BeikeSpider(scrapy.Spider):
  • name = 'beike'
  • allowed_domains = ['jn.zu.ke.com']
  • start_urls = ['https://jn.zu.ke.com/zufang']
  • page = 2
  • def parse(self, response):
  • print(response.url)
  • node_list = response.xpath('//div[@class="content__list--item--main"]')
  • print(len(node_list))
  • item = BeikeItem()
  • for node in node_list:
  • item["title"] = node.xpath("./p[1]/a/text()").extract_first().strip()
  • item["link"] = response.urljoin(node.xpath("./p[1]/a/@href").extract_first().strip())
  • item["address"] = node.xpath("./p[2]/a[3]/text()").extract_first().strip()
  • item["big"] = node.xpath("./p[2]/text()[5]").extract_first().strip()
  • item["where"] = node.xpath("./p[2]/text()[6]").extract_first().strip()
  • item["how"] = node.xpath("./p[2]/text()[7]").extract_first().strip()
  • item["price"] = node.xpath(
  • './span[@class="content__list--item-price"]/em/text()').extract_first().strip() + '元/月'
  • yield scrapy.Request(
  • url=item["link"],
  • callback=self.detail_parse,
  • meta={"item": copy.deepcopy(item)},
  • dont_filter=True
  • )
  • if self.page < 100:
  • next_url = 'https://jn.zu.ke.com/zufang/pg{}/#contentList'.format(self.page)
  • self.page += 1
  • yield scrapy.Request(next_url, callback=self.parse)
  • def detail_parse(self, response):
  • item = response.meta['item']
  • item["name"] = response.xpath('//*[@id="aside"]/div[2]/div[2]/div[1]/span/text()').extract_first()
  • print(item["title"])
  • yield item

pipline代码

  • # -*- coding: utf-8 -*-
  • # Define your item pipelines here
  • #
  • # Don't forget to add your pipeline to the ITEM_PIPELINES setting
  • # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
  • import csv
  • class SavePipeline(object):
  • def open_spider(self, spider):
  • self.file = open("贝壳.csv", 'a', newline="",encoding="gb18030")
  • self.csv_writer = csv.writer(self.file)
  • self.csv_writer.writerow(["标题", "链接", '地址', "大小", "方向", "居室",
  • "价格", "名字"])
  • def process_item(self, item, spider):
  • self.csv_writer.writerow(
  • [item["title"], item["link"], item["address"],
  • item["big"], item["where"], item["how"], item["price"], item["name"]]
  • )
  • return item
  • def close_spider(self, spider):
  • self.file.close()

setting文件

  • # -*- coding: utf-8 -*-
  • # Scrapy settings for Beike project
  • #
  • # For simplicity, this file contains only settings considered important or
  • # commonly used. You can find more settings consulting the documentation:
  • #
  • # https://docs.scrapy.org/en/latest/topics/settings.html
  • # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
  • # https://docs.scrapy.org/en/latest/topics/spider-middleware.html
  • BOT_NAME = 'Beike'
  • SPIDER_MODULES = ['Beike.spiders']
  • NEWSPIDER_MODULE = 'Beike.spiders'
  • # Crawl responsibly by identifying yourself (and your website) on the user-agent
  • USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 ' \
  • 'Safari/537.36 '
  • # Obey robots.txt rules
  • # ROBOTSTXT_OBEY = True
  • # Configure maximum concurrent requests performed by Scrapy (default: 16)
  • # CONCURRENT_REQUESTS = 32
  • # Configure a delay for requests for the same website (default: 0)
  • # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
  • # See also autothrottle settings and docs
  • # DOWNLOAD_DELAY = 3
  • # The download delay setting will honor only one of:
  • # CONCURRENT_REQUESTS_PER_DOMAIN = 16
  • # CONCURRENT_REQUESTS_PER_IP = 16
  • # Disable cookies (enabled by default)
  • # COOKIES_ENABLED = False
  • # Disable Telnet Console (enabled by default)
  • # TELNETCONSOLE_ENABLED = False
  • # Override the default request headers:
  • # DEFAULT_REQUEST_HEADERS = {
  • # "Referer": "https://jn.zu.ke.com/zufang"
  • # }
  • # Enable or disable spider middlewares
  • # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
  • # SPIDER_MIDDLEWARES = {
  • # 'Beike.middlewares.BeikeSpiderMiddleware': 543,
  • # }
  • # Enable or disable downloader middlewares
  • # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
  • # DOWNLOADER_MIDDLEWARES = {
  • # 'Beike.middlewares.BeikeDownloaderMiddleware': 543,
  • # }
  • # Enable or disable extensions
  • # See https://docs.scrapy.org/en/latest/topics/extensions.html
  • # EXTENSIONS = {
  • # 'scrapy.extensions.telnet.TelnetConsole': None,
  • # }
  • # Configure item pipelines
  • # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
  • ITEM_PIPELINES = {
  • 'Beike.pipelines.SavePipeline': 300,
  • }
  • # Enable and configure the AutoThrottle extension (disabled by default)
  • # See https://docs.scrapy.org/en/latest/topics/autothrottle.html
  • # AUTOTHROTTLE_ENABLED = True
  • # The initial download delay
  • # AUTOTHROTTLCONCURRENT_REQUESTSE_START_DELAY = 5
  • # The maximum download delay to be set in case of high latencies
  • # AUTOTHROTTLE_MAX_DELAY = 60
  • # The average number of requests Scrapy should be sending in parallel to
  • # each remote server
  • # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
  • # Enable showing throttling stats for every response received:
  • # AUTOTHROTTLE_DEBUG = False
  • # Enable and configure HTTP caching (disabled by default)
  • # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
  • # HTTPCACHE_ENABLED = True
  • # HTTPCACHE_EXPIRATION_SECS = 0
  • # HTTPCACHE_DIR = 'httpcache'
  • # HTTPCACHE_IGNORE_HTTP_CODES = []
  • # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

整个代码实现比较简单,就是有坑,每个人主要就是从项目中积累经验吧,这个网站,没有反爬,也没cookie模拟登录,后续遇到反爬可以用一个请求头池,还有ip代理池,进行持续化抓取数据,以上都是个人学习经验,如有不正请指教,谢谢!

在这里插入图片描述
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门