对于下面这幅图像,编程实现染色体计数,并附简要处理流程说明。
1.中值滤波
2.图像二值化
3.膨胀图像
4.腐蚀图像
5.计算光影背景
6.移除背景
7.检测染色体
- import cv2
- import numpy as np
-
- # 计算光影背景
- def calculateLightPattern(img4):
- h, w = img4.shape[0], img4.shape[1]
- img5 = cv2.blur(img4, (int(w/3), int(w/3)))
- return img5
-
- # 移除背景
- def removeLight(img4, img5, method):
- if method == 1:
- img4_32 = np.float32(img4)
- img5_32 = np.float32(img5)
- ratio = img4_32 / img5_32
- ratio[ratio > 1] = 1
- aux = 1 - ratio
-
- # 按比例转换为8bit格式
- aux = aux * 255
- aux = np.uint8(aux)
- else:
- aux = img5 - img4
- return aux
-
- def ConnectedComponents(aux):
- num_objects, labels = cv2.connectedComponents(aux)
-
- if num_objects < 2:
- print("connectedComponents未检测到染色体")
- return
- else:
- print("connectedComponents检测到染色体数量为:", num_objects - 1)
-
- output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8)
-
- for i in range(1, num_objects):
- mask = labels == i
- output[:, :, 0][mask] = np.random.randint(0, 255)
- output[:, :, 1][mask] = np.random.randint(0, 255)
- output[:, :, 2][mask] = np.random.randint(0, 255)
- return output
-
-
- def ConnectedComponentsStats(aux):
- num_objects, labels, status, centroids = cv2.connectedComponentsWithStats(aux)
-
- if num_objects < 2:
- print("connectedComponentsWithStats未检测到染色体")
- return
- else:
- print("connectedComponentsWithStats检测到染色体数量为:", num_objects - 1)
-
- output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8)
-
- for i in range(1, num_objects):
- mask = labels == i
- output[:, :, 0][mask] = np.random.randint(0, 255)
- output[:, :, 1][mask] = np.random.randint(0, 255)
- output[:, :, 2][mask] = np.random.randint(0, 255)
- return output
-
- def FindContours(aux):
- contours, hierarchy = cv2.findContours(aux, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- if len(contours) == 0:
- print("findContours未检测到染色体")
- return
- else:
- print("findContours检测到染色体数量为:", len(contours))
-
- output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8)
- for i in range(len(contours)):
- cv2.drawContours(
- output,
- contours,
- i,
- (np.random.randint(0, 255),
- np.random.randint(0, 255),
- np.random.randint(0, 255)), 2)
- return output
-
-
- # 读取图片
- img = cv2.imread('img.png', 0)
- pre_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 二值化函数
-
- # 第一步:中值滤波
- # 中值滤波
- img1 = cv2.medianBlur(img, 3)
-
- # 显示并保存图片
- cv2.imshow('gray', img)
-
- cv2.imshow('medianBlur', img1)
- cv2.imwrite('medianBlur.jpg', img1)
- # 第二步:图像二值化
- # 图像二值化
- ret, img2 = cv2.threshold(img1, 140, 255, 0, img1) # 二值化函数
-
- # 显示并保存图片
- cv2.imshow('threshold', img2)
- cv2.imwrite('threshold.jpg', img2)
-
- # 第三步:膨胀图像
- dilate_kernel = np.ones((3, 3), np.uint8)
- img3 = cv2.dilate(img2, dilate_kernel)
-
- # 显示并保存图片
- cv2.imshow('dilate', img3)
- cv2.imwrite('dilate.jpg', img3)
-
- # 第四步:腐蚀图像
- erode_kernel = np.ones((7, 7), np.uint8)
- img4 = cv2.erode(img3, erode_kernel)
-
- # 显示并保存图片
- cv2.imshow('erode', img4)
- cv2.imwrite('erode.jpg', img4)
-
- # 第五步:计算光影背景
- img5 = calculateLightPattern(img4)
- # 显示并保存图片
- cv2.imshow('LightPattern', img5)
- cv2.imwrite('LightPattern.jpg', img5)
-
- # 第六步:移除背景
- aux = removeLight(img4, img5, 1)
- # 显示并保存图片
- cv2.imshow('removeLight', aux)
- cv2.imwrite('removeLight.jpg', aux)
-
- # 第七步:检测轮廓
- output1 = ConnectedComponents(aux)
- output2 = ConnectedComponentsStats(aux)
- output3 = FindContours(aux)
- # 显示并保存图片
- cv2.imshow('connectedComponents', output1)
- cv2.imwrite('connectedComponents.jpg', output1)
- cv2.imshow('connectedComponentsWithStats', output2)
- cv2.imwrite('connectedComponentsWithStats.jpg', output2)
- cv2.imshow('findContours', output3)
- cv2.imwrite('findContours.jpg', output3)
- cv2.waitKey(0)
-
1.中值滤波
2.图像二值化
3.膨胀图像
4.腐蚀图像
5.计算光影背景
6.移除背景
7.检测染色体
(1)connectedComponents.jpg
(2)connectedComponentsWithStats.jpg
(3)findContours.jpg
染色体个数为46