您当前的位置:首页 > 计算机 > 编程开发 > Python

Python3词云生成器,功能强大到怀疑人生

时间:03-19来源:作者:点击数:

1、引言

小鱼:小屌丝,你在干啥呢?

小屌丝:鱼哥,你看, 我的PPT写的 高大尚不。

小鱼:这有啥高大尚的啊,

小屌丝:你仔细看, 往下翻一页

小鱼:额。你这那是PPT,就是浴皇大帝、昂科旗等车系的测评吗。

请添加图片描述

小屌丝:别管内容了, 鱼哥,你就说,这个样式怎么样, 帅不帅气吧。

小鱼:嗯,样式嘛, 还可以的。

小屌丝:鱼哥,你这么淡定, 你的意思, 你也会?

小鱼:额… 我可没说, 休想套路我。

小屌丝:鱼哥,我这就要说到公道话了, 独乐乐不如众乐乐。

小鱼:有的时候,需要独乐乐。

小屌丝:鱼哥,别整没用的, 你就说分不分享吧?

小鱼:额… 这个… 你说啥?

小屌丝:我说,你把这个代码分享出来呗。

小鱼:你说分享什么啊?

小屌丝:分享词云生成器的代码

小鱼:分享什么代码啊?

小屌丝:去泡温泉…

小鱼:好嘞,早说不就完事了嘛。

2、代码实战

2.1 库介绍

说到词云的制作, 不得不提的第三方库,stylecloud简洁易用的词云库

当然仅仅有stylecloud还是不够的, 还需要一个库,即 jieba:中文分词库

所以, 今天我们就用stylecloudjieba来完成本次的代码实战。

接下来, 我们先了解 这两个库。

2.1.1 jieba

jieba: 中文分词库

1、运行原理

  • 初始化:加载词典文件,获取每个词语和它出现的词数
  • 切分短语:利用正则,将文本切分为一个个语句,之后对语句进行分词
  • 构建DAG:通过字符串匹配,构建所有可能的分词情况的有向无环图,也就是DAG
  • 构建节点最大路径概率,以及结束位置:计算每个汉字节点到语句结尾的所有路径中的最大概率,并记下最大概率时在DAG中对应的该汉字成词的结束位置。
  • 构建切分组合:根据节点路径,得到词语切分的结果,也就是分词结果。
  • HMM新词处理:对于新词,也就是jieba词典中没有的词语,我们通过统计方法来处理,jieba中采用了HMM(隐马尔科夫模型)来处理。
  • 返回分词结果:通过yield将上面步骤中切分好的词语逐个返回。yield相对于list,可以节约存储空间。

2、主要模式

  • 精确模式:把文本精确的切分开,不存在冗余单词
  • 全模式:把文本中所有可能的词语都扫描出来,有冗余
  • 搜索引擎模式:在精确模式基础上,对长词再次切分

3、主要功能

  • jieba.cut 方法接受四个输入参数:
    • 需要分词的字符串;
    • cut_all 参数用来控制是否采用全模式;
    • HMM 参数用来控制是否使用 HMM 模型;
    • use_paddle 参数用来控制是否使用paddle模式下的分词模式,
      • paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码;
  • jieba.cut_for_search 方法接受两个参数
    • 需要分词的字符串;
    • 是否使用 HMM 模型。
      • 该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。
  • jieba.dt为默认分词器,所有全局分词相关函数都是该分词器的映射。

2.1.2 stylecloud

关于词云生成工具, 常用的无非这3种:

  • pyecharts
    • 简单易用;
    • 上手快;
    • 不够美观;
  • wordcloud
    • 使用频次最高;
    • 使用最广泛;
  • stylecloud
    • 简单易用
    • 最接近完美

接下来,我们就使用 sytlecloud第三方库,看看它完美到什么程度。

2.2 库安装

涉及到第三方库,肯定就需要安装

老规矩,pip 安装

pip install jieba
pip install stylecloud

然后就是等待着安装。

其它安装方式,直接看这两篇:

在这里插入图片描述

2.2 代码实战

代码示例

# -*- coding:utf-8 -*-
# @Time   : 2023-01-10
# @Author : Carl_DJ

'''
实现功能:
    词云生成器
'''

import json
import stylecloud
import codecs
import jieba
from collections import Counter

#过滤掉高频出现的词汇
passwords = set()
#读取词汇文档
content = [line.strip() for line in open('./data/passwords.txt', 'r',encoding='utf8').readlines()]
passwords.update(content)

#获取文档词汇, 并截取长度为3个
def make_words(txt):
    make_list = jieba.cut(txt)
    c = Counter()
    words_list = []
	#获取词汇文本
    for x in make_list:
    	#长度为3,超过截取
        if len(x) ==  3 and x !='\r\n':
            c[x]  += 1
            words_list.append(x)

    for k,v in c.most_common(50):
        if k not in passwords:
            # print(f'{k,v}')
    #组合词云内容
    return " ".join(words_list)

#读取中大型suv测评.txt内容
with codecs.open('./data/中大型suv测评.txt','r','utf8') as f: #格式需要utf8 否则会报错
    txt = f.read()
#
words_txt = make_words(txt)
#设置词云展示的样式,字体,生成文件名称等,
stylecloud.gen_stylecloud(text=words_txt,custom_stopwords=content,
                          background_color='#1A1A1A',
                          colors=['#dd4444', '#fec42c', '#fac858'],
                          max_font_size=100,
                          output_name='xt6测评.jpg',
                          font_path="C:/Windows/Fonts/FZSTK.TTF"
                          )

结果展示

请添加图片描述

这里需要准备两个文件

  • password.txt: 过滤文本中出现太多次数的词汇;
  • suv测评.txt:词云的主要显示的文本内容;

文本内容示例

在这里插入图片描述

这里强调一点

  • 文本的内容,你可以一行写很多字,
  • 但是,为了词云展示的内容更丰富, 列数,一定要多。

当然,文档内容, 也可以是下载的小说,或者你自己写的任何内容。

3、总结

看到这里, 今天的分享就要结束了。

回头看一下,

其实词云生成器,并不难。

主要就是对jieba、stylecloud这两个库的使用。

这里我仅仅列举了stylecloud第三方库,

当然,如果你有兴趣,也可以使用pyechartswordcloud,看看生成的词云如何。

也就当是你自己的练手了。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门