在正式进入这个问题之前,我们先来了解一下tensorflow和keras之间的关系,因为后面会用到这个地方的知识。
import tensorflow as tf
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
# tf.compat.v1.ConfigProto() 这是tensorflow2.0+版本的写法,这个方法的作用就是设置运行tensorflow代码的时候的一些配置,例如如何分配显存,是否打印日志等;所以它的参数都是 配置名称=True/False(默认为False) 这种形式
# gpu_options=tf.compat.v1.GPUOptions(allow_growth=True) 限制GPU资源的使用,此处allow_growth=True是动态分配显存,需要多少,申请多少,不是一成不变、而是一直变化
# sess = tf.compat.v1.Session(config=config) 让这些配置生效
+ 为什么使用tensorflow的代码能够解决keras的问题,这就可以用第一部分两者的关系来解释了,keras的底层是tensorflow