pandas rename 功能
- 在使用 pandas 的过程中经常会用到修改列名称的问题,会用到 rename 或者 reindex 等功能,每次都需要去查文档
- 当然经常也可以使用 df.columns重新赋值为某个列表
- 用 rename 则可以轻松应对 pandas 中修改列名的问题
导入常用的数据包
import pandas as pd
import numpy as np
构建一个 含有multiIndex的 Series
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
s = pd.Series(np.random.randn(8), index=index)
s.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
查看 s
s
first second
bar one -0.073094
two -0.449141
baz one 0.109093
two -0.033135
foo one 1.315809
two -0.887890
qux one 2.255328
two -0.778246
dtype: float64
使用set_names可以将 index 中的名称进行更改
s.index.set_names(['L1', 'L2'], inplace=True)
s
L1 L2
bar one 0.037524
two -0.178425
baz one -0.778211
two 1.440168
foo one 0.314172
two 0.710597
qux one 1.197275
two 0.527058
dtype: float64
s.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['L1', 'L2'])
同样可以使用 rename 将Series 修改回来
s.index.rename(['first','second'],inplace= True)
s
first second
bar one 0.037524
two -0.178425
baz one -0.778211
two 1.440168
foo one 0.314172
two 0.710597
qux one 1.197275
two 0.527058
dtype: float64
使用reset_index 可以将 index 中的两列转化为正常的列
s.reset_index()
|
first |
second |
0 |
0 |
bar |
one |
0.037524 |
1 |
bar |
two |
-0.178425 |
2 |
baz |
one |
-0.778211 |
3 |
baz |
two |
1.440168 |
4 |
foo |
one |
0.314172 |
5 |
foo |
two |
0.710597 |
6 |
qux |
one |
1.197275 |
7 |
qux |
two |
0.527058 |
可以使用 pivot_table 恢复成一开始的样子,将两列重新作为 index 展示出来
s.reset_index().pivot_table(index=['first','second'],values=0,aggfunc=lambda x:x)
|
|
0 |
first |
second |
|
bar |
one |
0.037524 |
two |
-0.178425 |
baz |
one |
-0.778211 |
two |
1.440168 |
foo |
one |
0.314172 |
two |
0.710597 |
qux |
one |
1.197275 |
two |
0.527058 |
同样可以使用最简单的方式进行更改 index 中的名称
s.index.names=['first1','second1'] ## 此操作,相当于直接赋值,会更改 s
s.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first1', 'second1'])
s
first1 second1
bar one 0.037524
two -0.178425
baz one -0.778211
two 1.440168
foo one 0.314172
two 0.710597
qux one 1.197275
two 0.527058
dtype: float64
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4,
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
'D' : np.random.randn(12),
'E' : np.random.randn(12)})
df.head()
|
A |
B |
C |
D |
E |
0 |
one |
A |
foo |
0.664180 |
-0.107764 |
1 |
one |
B |
foo |
-0.833609 |
0.008083 |
2 |
two |
C |
foo |
0.117919 |
-1.365583 |
3 |
three |
A |
bar |
-0.116776 |
-1.201934 |
4 |
one |
B |
bar |
-1.315190 |
-0.157779 |
df.pivot_table(index=['A','C'],values=['D'],columns='B',aggfunc=np.sum,fill_value='unknown')
|
|
D |
|
B |
A |
B |
C |
A |
C |
|
|
|
one |
bar |
2.71452 |
-1.31519 |
0.0231296 |
foo |
0.66418 |
-0.833609 |
-0.96451 |
three |
bar |
-0.116776 |
unknown |
0.450891 |
foo |
unknown |
0.012846 |
unknown |
two |
bar |
unknown |
0.752643 |
unknown |
foo |
0.963631 |
unknown |
0.117919 |
df1 =df.pivot_table(index=['A','C'],values=['D'],columns='B',aggfunc=np.sum,fill_value='unknown')
df1.index
MultiIndex(levels=[['one', 'three', 'two'], ['bar', 'foo']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['A', 'C'])
df1.index.names=['first','second']
df1
|
|
D |
|
B |
A |
B |
C |
first |
second |
|
|
|
one |
bar |
2.71452 |
-1.31519 |
0.0231296 |
foo |
0.66418 |
-0.833609 |
-0.96451 |
three |
bar |
-0.116776 |
unknown |
0.450891 |
foo |
unknown |
0.012846 |
unknown |
two |
bar |
unknown |
0.752643 |
unknown |
foo |
0.963631 |
unknown |
0.117919 |
df1_stack=df1.stack()
df1_stack.index.names=['first','second','third']
df1_stack
|
|
|
D |
first |
second |
third |
|
one |
bar |
A |
2.71452 |
B |
-1.31519 |
C |
0.0231296 |
foo |
A |
0.66418 |
B |
-0.833609 |
C |
-0.96451 |
three |
bar |
A |
-0.116776 |
B |
unknown |
C |
0.450891 |
foo |
A |
unknown |
B |
0.012846 |
C |
unknown |
two |
bar |
A |
unknown |
B |
0.752643 |
C |
unknown |
foo |
A |
0.963631 |
B |
unknown |
C |
0.117919 |
df1_stack.columns=['总和']
df1_stack
|
|
|
总和 |
first |
second |
third |
|
one |
bar |
A |
2.71452 |
B |
-1.31519 |
C |
0.0231296 |
foo |
A |
0.66418 |
B |
-0.833609 |
C |
-0.96451 |
three |
bar |
A |
-0.116776 |
B |
unknown |
C |
0.450891 |
foo |
A |
unknown |
B |
0.012846 |
C |
unknown |
two |
bar |
A |
unknown |
B |
0.752643 |
C |
unknown |
foo |
A |
0.963631 |
B |
unknown |
C |
0.117919 |
df2 = df1_stack.reset_index()
df2.set_index('first')
|
second |
third |
总和 |
first |
|
|
|
one |
bar |
A |
2.71452 |
one |
bar |
B |
-1.31519 |
one |
bar |
C |
0.0231296 |
one |
foo |
A |
0.66418 |
one |
foo |
B |
-0.833609 |
one |
foo |
C |
-0.96451 |
three |
bar |
A |
-0.116776 |
three |
bar |
B |
unknown |
three |
bar |
C |
0.450891 |
three |
foo |
A |
unknown |
three |
foo |
B |
0.012846 |
three |
foo |
C |
unknown |
two |
bar |
A |
unknown |
two |
bar |
B |
0.752643 |
two |
bar |
C |
unknown |
two |
foo |
A |
0.963631 |
two |
foo |
B |
unknown |
two |
foo |
C |
0.117919 |