txt 转 coco json格式
# -*- coding: UTF-8 -*-
import cv2
import json
import sys
# process bar
def process_bar(count, total, status=''):
bar_len = 60
filled_len = int(round(bar_len * count / float(total)))
percents = round(100.0 * count / float(total), 1)
bar = '=' * filled_len + '-' * (bar_len - filled_len)
sys.stdout.write('[%s] %s%s ...%s\r' % (bar, percents, '%', status))
sys.stdout.flush()
root_path = "/Users/mot/val/"
images, categories, annotations = [], [], []
category_dict = {"people": 1}
for cat_n in category_dict:
categories.append({"supercategory": "", "id": category_dict[cat_n], "name": cat_n})
# with open("train_clean.txt", "r") as f:
with open('val_clean.txt', 'r') as f:
img_id = 0
anno_id_count = 0
count = 1
# total = len(f.readlines())
# print(111,total)
lines = f.readlines()
total = len(lines)
# print(333,lines)
for line in lines:
# print(2222,line)
# process_bar(count, total)
print('{}/{}'.format(count,total))
count += 1
line = line.split(' ')
img_name = line[0]
bbox_num = int(line[1])
img_cv2 = cv2.imread(root_path + img_name)
[height, width, _] = img_cv2.shape
bbox = line[1:]
x = bbox[1::5]
y = bbox[2::5]
w = bbox[3::5]
h = bbox[4::5]
# img_name+=' '
# fp.write(img_name)
# for i in range(len(x)):
# images info
images.append({"file_name": img_name, "height": height, "width": width, "id": img_id})
"""
annotation info:
id : anno_id_count
category_id : category_id
bbox : bbox
segmentation : [segment]
area : area
iscrowd : 0
image_id : image_id
"""
category_id = category_dict["people"]
for i in range(0, len(x)):
x1, y1, weight, height = int(x[i]), int(y[i]), int(w[i]), int(h[i])
x2,y2 = x1+weight,y1+height
# box = '{} {},{},{},{}\n'.format(img_name, x1, y1, x2, y2)
# x1 = float(line[i * 5 + 3])
# y1 = float(line[i * 5 + 4])
# x2 = float(line[i * 5 + 3]) + float(line[i * 5 + 5])
# y2 = float(line[i * 5 + 4]) + float(line[i * 5 + 6])
# width = float(line[i * 5 + 5])
# height = float(line[i * 5 + 6])
bbox = [x1, y1, width, height]
segment = [x1, y1, x2, y1, x2, y2, x1, y2]
area = width * height
anno_info = {'id': anno_id_count, 'category_id': category_id, 'bbox': bbox, 'segmentation': [segment],
'area': area, 'iscrowd': 0, 'image_id': img_id}
annotations.append(anno_info)
anno_id_count += 1
img_id = img_id + 1
all_json = {"images": images, "annotations": annotations, "categories": categories}
with open("val.json", "w") as outfile:
json.dump(all_json, outfile)