2025年3月25日 星期二 甲辰(龙)年 月廿四 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > Python

人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)

时间:10-27来源:作者:点击数:108

聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈笑风生,无论如何,我们都得承认,人工智能已经深入了我们的生活。

目前市面上提供三方api的机器人不胜枚举:微软小冰、图灵机器人、腾讯闲聊、青云客机器人等等,只要我们想,就随时可以在app端或者web应用上进行接入。但是,这些应用的底层到底如何实现的?在没有网络接入的情况下,我们能不能像美剧《西部世界》(Westworld)里面描绘的那样,机器人只需要存储在本地的“心智球”就可以和人类沟通交流,如果你不仅仅满足于当一个“调包侠”,请跟随我们的旅程,本次我们将首度使用深度学习库Keras/TensorFlow打造属于自己的本地聊天机器人,不依赖任何三方接口与网络。

首先安装相关依赖:

  • pip3 install Tensorflow
  • pip3 install Keras
  • pip3 install nltk
  • pip3 install pandas

然后撰写脚本test_bot.py导入需要的库:

  • import nltk
  • import ssl
  • from nltk.stem.lancaster import LancasterStemmer
  • stemmer = LancasterStemmer()
  • import numpy as np
  • from keras.models import Sequential
  • from keras.layers import Dense, Activation, Dropout
  • from keras.optimizers import SGD
  • import pandas as pd
  • import pickle
  • import random

这里有一个坑,就是自然语言分析库NLTK会报一个错误:

Resource punkt not found

正常情况下,只要加上一行下载器代码即可

  • import nltk
  • nltk.download('punkt')

但是由于学术上网的原因,很难通过python下载器正常下载,所以我们玩一次曲线救国,手动自己下载压缩包:

  • https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/tokenizers/punkt.zip

解压之后,放在你的用户目录下即可:

  • C:\Users\liuyue\tokenizers\nltk_data\punkt

ok,言归正传,开发聊天机器人所面对的最主要挑战是对用户输入信息进行分类,以及能够识别人类的正确意图(这个可以用机器学习解决,但是太复杂,我偷懒了,所以用的深度学习Keras)。第二就是怎样保持语境,也就是分析和跟踪上下文,通常情况下,我们不太需要对用户意图进行分类,只需要把用户输入的信息当作聊天机器人问题的答案即可,所这里我们使用Keras深度学习库用于构建分类模型。

聊天机器人的意向和需要学习的模式都定义在一个简单的变量中。不需要动辄上T的语料库。我们知道如果玩机器人的,手里没有语料库,就会被人嘲笑,但是我们的目标只是为某一个特定的语境建立一个特定聊天机器人。所以分类模型作为小词汇量创建,它仅仅将能够识别为训练提供的一小组模式。

说白了就是,所谓的机器学习,就是你重复的教机器做某一件或几件正确的事情,在训练中,你不停的演示怎么做是正确的,然后期望机器在学习中能够举一反三,只不过这次我们不教它很多事情,只一件,用来测试它的反应而已,是不是有点像你在家里训练你的宠物狗?只不过狗子可没法和你聊天。

这里的意向数据变量我就简单举个例子,如果愿意,你可以用语料库对变量进行无限扩充:

  • intents = {"intents": [
  • {"tag": "打招呼",
  • "patterns": ["你好", "您好", "请问", "有人吗", "师傅","不好意思","美女","帅哥","靓妹","hi"],
  • "responses": ["您好", "又是您啊", "吃了么您内","您有事吗"],
  • "context": [""]
  • },
  • {"tag": "告别",
  • "patterns": ["再见", "拜拜", "88", "回见", "回头见"],
  • "responses": ["再见", "一路顺风", "下次见", "拜拜了您内"],
  • "context": [""]
  • },
  • ]
  • }

可以看到,我插入了两个语境标签,打招呼和告别,包括用户输入信息以及机器回应数据。

在开始分类模型训练之前,我们需要先建立词汇。模式经过处理后建立词汇库。每一个词都会有词干产生通用词根,这将有助于能够匹配更多用户输入的组合。

  • for intent in intents['intents']:
  • for pattern in intent['patterns']:
  • # tokenize each word in the sentence
  • w = nltk.word_tokenize(pattern)
  • # add to our words list
  • words.extend(w)
  • # add to documents in our corpus
  • documents.append((w, intent['tag']))
  • # add to our classes list
  • if intent['tag'] not in classes:
  • classes.append(intent['tag'])
  • words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
  • words = sorted(list(set(words)))
  • classes = sorted(list(set(classes)))
  • print (len(classes), "语境", classes)
  • print (len(words), "词数", words)

输出:

  • 2 语境 ['告别', '打招呼']
  • 14 词数 ['88', '不好意思', '你好', '再见', '回头见', '回见', '帅哥', '师傅', '您好', '拜拜', '有人吗', '美女', '请问', '靓妹']

训练不会根据词汇来分析,因为词汇对于机器来说是没有任何意义的,这也是很多中文分词库所陷入的误区,其实机器并不理解你输入的到底是英文还是中文,我们只需要将单词或者中文转化为包含0/1的数组的词袋。数组长度将等于词汇量大小,当当前模式中的一个单词或词汇位于给定位置时,将设置为1。

  • # create our training data
  • training = []
  • # create an empty array for our output
  • output_empty = [0] * len(classes)
  • # training set, bag of words for each sentence
  • for doc in documents:
  • # initialize our bag of words
  • bag = []
  • pattern_words = doc[0]
  • pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]
  • for w in words:
  • bag.append(1) if w in pattern_words else bag.append(0)
  • output_row = list(output_empty)
  • output_row[classes.index(doc[1])] = 1
  • training.append([bag, output_row])
  • random.shuffle(training)
  • training = np.array(training)
  • train_x = list(training[:,0])
  • train_y = list(training[:,1])

我们开始进行数据训练,模型是用Keras建立的,基于三层。由于数据基数小,分类输出将是多类数组,这将有助于识别编码意图。使用softmax激活来产生多类分类输出(结果返回一个0/1的数组:[1,0,0,...,0]--这个数组可以识别编码意图)。

  • model = Sequential()
  • model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
  • model.add(Dropout(0.5))
  • model.add(Dense(64, activation='relu'))
  • model.add(Dropout(0.5))
  • model.add(Dense(len(train_y[0]), activation='softmax'))
  • sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
  • model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
  • model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)

这块是以200次迭代的方式执行训练,批处理量为5个,因为我的测试数据样本小,所以100次也可以,这不是重点。

开始训练:

  • 14/14 [==============================] - 0s 32ms/step - loss: 0.7305 - acc: 0.5000
  • Epoch 2/200
  • 14/14 [==============================] - 0s 391us/step - loss: 0.7458 - acc: 0.4286
  • Epoch 3/200
  • 14/14 [==============================] - 0s 390us/step - loss: 0.7086 - acc: 0.3571
  • Epoch 4/200
  • 14/14 [==============================] - 0s 395us/step - loss: 0.6941 - acc: 0.6429
  • Epoch 5/200
  • 14/14 [==============================] - 0s 426us/step - loss: 0.6358 - acc: 0.7143
  • Epoch 6/200
  • 14/14 [==============================] - 0s 356us/step - loss: 0.6287 - acc: 0.5714
  • Epoch 7/200
  • 14/14 [==============================] - 0s 366us/step - loss: 0.6457 - acc: 0.6429
  • Epoch 8/200
  • 14/14 [==============================] - 0s 899us/step - loss: 0.6336 - acc: 0.6429
  • Epoch 9/200
  • 14/14 [==============================] - 0s 464us/step - loss: 0.5815 - acc: 0.6429
  • Epoch 10/200
  • 14/14 [==============================] - 0s 408us/step - loss: 0.5895 - acc: 0.6429
  • Epoch 11/200
  • 14/14 [==============================] - 0s 548us/step - loss: 0.6050 - acc: 0.6429
  • Epoch 12/200
  • 14/14 [==============================] - 0s 468us/step - loss: 0.6254 - acc: 0.6429
  • Epoch 13/200
  • 14/14 [==============================] - 0s 388us/step - loss: 0.4990 - acc: 0.7857
  • Epoch 14/200
  • 14/14 [==============================] - 0s 392us/step - loss: 0.5880 - acc: 0.7143
  • Epoch 15/200
  • 14/14 [==============================] - 0s 370us/step - loss: 0.5118 - acc: 0.8571
  • Epoch 16/200
  • 14/14 [==============================] - 0s 457us/step - loss: 0.5579 - acc: 0.7143
  • Epoch 17/200
  • 14/14 [==============================] - 0s 432us/step - loss: 0.4535 - acc: 0.7857
  • Epoch 18/200
  • 14/14 [==============================] - 0s 357us/step - loss: 0.4367 - acc: 0.7857
  • Epoch 19/200
  • 14/14 [==============================] - 0s 384us/step - loss: 0.4751 - acc: 0.7857
  • Epoch 20/200
  • 14/14 [==============================] - 0s 346us/step - loss: 0.4404 - acc: 0.9286
  • Epoch 21/200
  • 14/14 [==============================] - 0s 500us/step - loss: 0.4325 - acc: 0.8571
  • Epoch 22/200
  • 14/14 [==============================] - 0s 400us/step - loss: 0.4104 - acc: 0.9286
  • Epoch 23/200
  • 14/14 [==============================] - 0s 738us/step - loss: 0.4296 - acc: 0.7857
  • Epoch 24/200
  • 14/14 [==============================] - 0s 387us/step - loss: 0.3706 - acc: 0.9286
  • Epoch 25/200
  • 14/14 [==============================] - 0s 430us/step - loss: 0.4213 - acc: 0.8571
  • Epoch 26/200
  • 14/14 [==============================] - 0s 351us/step - loss: 0.2867 - acc: 1.0000
  • Epoch 27/200
  • 14/14 [==============================] - 0s 3ms/step - loss: 0.2903 - acc: 1.0000
  • Epoch 28/200
  • 14/14 [==============================] - 0s 366us/step - loss: 0.3010 - acc: 0.9286
  • Epoch 29/200
  • 14/14 [==============================] - 0s 404us/step - loss: 0.2466 - acc: 0.9286
  • Epoch 30/200
  • 14/14 [==============================] - 0s 428us/step - loss: 0.3035 - acc: 0.7857
  • Epoch 31/200
  • 14/14 [==============================] - 0s 407us/step - loss: 0.2075 - acc: 1.0000
  • Epoch 32/200
  • 14/14 [==============================] - 0s 457us/step - loss: 0.2167 - acc: 0.9286
  • Epoch 33/200
  • 14/14 [==============================] - 0s 613us/step - loss: 0.1266 - acc: 1.0000
  • Epoch 34/200
  • 14/14 [==============================] - 0s 534us/step - loss: 0.2906 - acc: 0.9286
  • Epoch 35/200
  • 14/14 [==============================] - 0s 463us/step - loss: 0.2560 - acc: 0.9286
  • Epoch 36/200
  • 14/14 [==============================] - 0s 500us/step - loss: 0.1686 - acc: 1.0000
  • Epoch 37/200
  • 14/14 [==============================] - 0s 387us/step - loss: 0.0922 - acc: 1.0000
  • Epoch 38/200
  • 14/14 [==============================] - 0s 430us/step - loss: 0.1620 - acc: 1.0000
  • Epoch 39/200
  • 14/14 [==============================] - 0s 371us/step - loss: 0.1104 - acc: 1.0000
  • Epoch 40/200
  • 14/14 [==============================] - 0s 488us/step - loss: 0.1330 - acc: 1.0000
  • Epoch 41/200
  • 14/14 [==============================] - 0s 381us/step - loss: 0.1322 - acc: 1.0000
  • Epoch 42/200
  • 14/14 [==============================] - 0s 462us/step - loss: 0.0575 - acc: 1.0000
  • Epoch 43/200
  • 14/14 [==============================] - 0s 1ms/step - loss: 0.1137 - acc: 1.0000
  • Epoch 44/200
  • 14/14 [==============================] - 0s 450us/step - loss: 0.0245 - acc: 1.0000
  • Epoch 45/200
  • 14/14 [==============================] - 0s 470us/step - loss: 0.1824 - acc: 1.0000
  • Epoch 46/200
  • 14/14 [==============================] - 0s 444us/step - loss: 0.0822 - acc: 1.0000
  • Epoch 47/200
  • 14/14 [==============================] - 0s 436us/step - loss: 0.0939 - acc: 1.0000
  • Epoch 48/200
  • 14/14 [==============================] - 0s 396us/step - loss: 0.0288 - acc: 1.0000
  • Epoch 49/200
  • 14/14 [==============================] - 0s 580us/step - loss: 0.1367 - acc: 0.9286
  • Epoch 50/200
  • 14/14 [==============================] - 0s 351us/step - loss: 0.0363 - acc: 1.0000
  • Epoch 51/200
  • 14/14 [==============================] - 0s 379us/step - loss: 0.0272 - acc: 1.0000
  • Epoch 52/200
  • 14/14 [==============================] - 0s 358us/step - loss: 0.0712 - acc: 1.0000
  • Epoch 53/200
  • 14/14 [==============================] - 0s 4ms/step - loss: 0.0426 - acc: 1.0000
  • Epoch 54/200
  • 14/14 [==============================] - 0s 370us/step - loss: 0.0430 - acc: 1.0000
  • Epoch 55/200
  • 14/14 [==============================] - 0s 368us/step - loss: 0.0292 - acc: 1.0000
  • Epoch 56/200
  • 14/14 [==============================] - 0s 494us/step - loss: 0.0777 - acc: 1.0000
  • Epoch 57/200
  • 14/14 [==============================] - 0s 356us/step - loss: 0.0496 - acc: 1.0000
  • Epoch 58/200
  • 14/14 [==============================] - 0s 427us/step - loss: 0.1485 - acc: 1.0000
  • Epoch 59/200
  • 14/14 [==============================] - 0s 381us/step - loss: 0.1006 - acc: 1.0000
  • Epoch 60/200
  • 14/14 [==============================] - 0s 421us/step - loss: 0.0183 - acc: 1.0000
  • Epoch 61/200
  • 14/14 [==============================] - 0s 344us/step - loss: 0.0788 - acc: 0.9286
  • Epoch 62/200
  • 14/14 [==============================] - 0s 529us/step - loss: 0.0176 - acc: 1.0000

ok,200次之后,现在模型已经训练好了,现在声明一个方法用来进行词袋转换:

  • def clean_up_sentence(sentence):
  • # tokenize the pattern - split words into array
  • sentence_words = nltk.word_tokenize(sentence)
  • # stem each word - create short form for word
  • sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
  • return sentence_words
  • def bow(sentence, words, show_details=True):
  • # tokenize the pattern
  • sentence_words = clean_up_sentence(sentence)
  • # bag of words - matrix of N words, vocabulary matrix
  • bag = [0]*len(words)
  • for s in sentence_words:
  • for i,w in enumerate(words):
  • if w == s:
  • # assign 1 if current word is in the vocabulary position
  • bag[i] = 1
  • if show_details:
  • print ("found in bag: %s" % w)
  • return(np.array(bag))

测试一下,看看是否可以命中词袋:

  • p = bow("你好", words)
  • print (p)

返回值:

  • found in bag: 你好
  • [0 0 1 0 0 0 0 0 0 0 0 0 0 0]

很明显匹配成功,词已入袋。

在我们打包模型之前,可以使用model.predict函数对用户输入进行分类测试,并根据计算出的概率返回用户意图(可以返回多个意图,根据概率倒序输出):

  • def classify_local(sentence):
  • ERROR_THRESHOLD = 0.25
  • # generate probabilities from the model
  • input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=['input'])
  • results = model.predict([input_data])[0]
  • # filter out predictions below a threshold, and provide intent index
  • results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]
  • # sort by strength of probability
  • results.sort(key=lambda x: x[1], reverse=True)
  • return_list = []
  • for r in results:
  • return_list.append((classes[r[0]], str(r[1])))
  • # return tuple of intent and probability
  • return return_list

测试一下:

  • print(classify_local('您好'))

返回值:

  • found in bag: 您好
  • [('打招呼', '0.999913')]
  • liuyue:mytornado liuyue$

再测:

  • print(classify_local('88'))

返回值:

  • found in bag: 88
  • [('告别', '0.9995449')]

完美,匹配出打招呼的语境标签,如果愿意,可以多测试几个,完善模型。

测试完成之后,我们可以将训练好的模型打包,这样每次调用之前就不用训练了:

  • model.save("./v3u.h5")

这里分类模型会在根目录产出,文件名为v3u.h5,将它保存好,一会儿会用到。

接下来,我们来搭建一个聊天机器人的API,这里我们使用目前非常火的框架Fastapi,将模型文件放入到项目的目录之后,编写main.py:

  • import random
  • import uvicorn
  • from fastapi import FastAPI
  • app = FastAPI()
  • def classify_local(sentence):
  • ERROR_THRESHOLD = 0.25
  • # generate probabilities from the model
  • input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=['input'])
  • results = model.predict([input_data])[0]
  • # filter out predictions below a threshold, and provide intent index
  • results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]
  • # sort by strength of probability
  • results.sort(key=lambda x: x[1], reverse=True)
  • return_list = []
  • for r in results:
  • return_list.append((classes[r[0]], str(r[1])))
  • # return tuple of intent and probability
  • return return_list
  • @app.get('/')
  • async def root(word: str = None):
  • from keras.models import model_from_json,load_model
  • model = load_model("./v3u.h5")
  • wordlist = classify_local(word)
  • a = ""
  • for intent in intents['intents']:
  • if intent['tag'] == wordlist[0][0]:
  • a = random.choice(intent['responses'])
  • return {'message':a}
  • if __name__ == "__main__":
  • uvicorn.run(app, host="127.0.0.1", port=8000)

这里的:

  • from keras.models import model_from_json,load_model
  • model = load_model("./v3u.h5")

用来导入刚才训练好的模型库,随后启动服务:

  • uvicorn main:app --reload

效果是这样的:

结语:毫无疑问,科技改变生活,聊天机器人可以让我们没有佳人相伴的情况下,也可以听闻莺啼燕语,相信不久的将来,笑语盈盈、衣香鬓影的“机械姬”亦能伴吾等于清风明月之下。

方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门