矩阵乘法是将两个矩阵作为输入值,并将 A 矩阵的行与 B 矩阵的列对应位置相乘再相加,从而生成一个新矩阵,如下图所示:
注意:必须确保第一个矩阵中的行数等于第二个矩阵中的列数,否则不能进行矩阵乘法运算。
矩阵乘法运算被称为向量化操作,向量化的主要目的是减少使用的 for 循环次数或者根本不使用。这样做的目的是为了加速程序的计算。
下面介绍 NumPy 提供的三种矩阵乘法,从而进一步加深对矩阵乘法的理解。
multiple() 函数用于两个矩阵的逐元素乘法,示例如下:
import numpy as np
array1=np.array([[1,2,3],[4,5,6],[7,8,9]],ndmin=3)
array2=np.array([[9,8,7],[6,5,4],[3,2,1]],ndmin=3)
result=np.multiply(array1,array2)
result
输出结果:
matmul() 用于计算两个数组的矩阵乘积。示例如下:
import numpy as np
array1=np.array([[1,2,3],[4,5,6],[7,8,9]],ndmin=3)
array2=np.array([[9,8,7],[6,5,4],[3,2,1]],ndmin=3)
result=np.matmul(array1,array2)
print(result)
输出结果:
dot() 函数用于计算两个矩阵的点积。如下所示:
示例如下:
import numpy as np
array1=np.array([[1,2,3],[4,5,6],[7,8,9]],ndmin=3)
array2=np.array([[9,8,7],[6,5,4],[3,2,1]],ndmin=3)
result=np.dot(array1,array2)
print(result)
输出结果: