2025年3月31日 星期一 乙巳(蛇)年 正月初一 设为首页 加入收藏
rss
您当前的位置:首页 > 计算机 > 编程开发 > Python

Python Matplotlib 3D绘图详解(汇总)

时间:01-30来源:作者:点击数:369

最初开发的 Matplotlib,仅支持绘制 2d 图形,后来随着版本的不断更新, Matplotlib 在二维绘图的基础上,构建了一部分较为实用的 3D 绘图程序包,比如 mpl_toolkits.mplot3d,通过调用该程序包一些接口可以绘制 3D散点图、3D曲面图、3D线框图等

mpl_toolkits 是 Matplotlib 的绘图工具包。

第一个三维绘图程序

下面编写第一个三维绘图程序。

首先创建一个三维绘图区域, plt.axes() 函数提供了一个参数projection,将其参数值设置为 "3d"。如下所示:

  • #导入三维工具包mplot3d
  • from mpl_toolkits import mplot3d
  • import numpy as np
  • import matplotlib.pyplot as plt
  • fig = plt.figure()
  • #创建3d绘图区域
  • ax = plt.axes(projection='3d')

有了三维绘图区域,接下来就要构建 3d 图像,如下所示:

  • #从三个维度构建
  • z = np.linspace(0, 1, 100)
  • x = z * np.sin(20 * z)
  • y = z * np.cos(20 * z)

最后调用 plot3D() 方法绘制 3d 图形,代码如下:

  • #调用 ax.plot3D创建三维线图
  • ax.plot3D(x, y, z, 'gray')
  • ax.set_title('3D line plot')
  • plt.show()

完整程序如下所示:

  • from mpl_toolkits import mplot3d
  • import numpy as np
  • import matplotlib.pyplot as plt
  • fig = plt.figure()
  • #从三个维度构建
  • z = np.linspace(0, 1, 100)
  • x = z * np.sin(20 * z)
  • y = z * np.cos(20 * z)
  • #调用 ax.plot3D创建三维线图
  • ax.plot3D(x, y, z, 'gray')
  • ax.set_title('3D line plot')
  • plt.show()

输出结果如下所示:

matplotlib 3D绘图
图1:三维线图(3D Line)

上述代码中的 ax.plot3D() 函数可以绘制各种三维图形,这些三维图都要根据(x,y,z)三元组类来创建。

3D散点图

通过 ax.scatter3D() 函数可以绘制 3D 散点图,示例代码如下:

  • from mpl_toolkits import mplot3d
  • import numpy as np
  • import matplotlib.pyplot as plt
  • fig = plt.figure()
  • #创建绘图区域
  • ax = plt.axes(projection='3d')
  • #构建xyz
  • z = np.linspace(0, 1, 100)
  • x = z * np.sin(20 * z)
  • y = z * np.cos(20 * z)
  • c = x + y
  • ax.scatter3D(x, y, z, c=c)
  • ax.set_title('3d Scatter plot')
  • plt.show()

输出结果图:

scatter散点图3D绘图
图2:Matplotlib 3D绘图

3D等高线图

ax.contour3D() 可以用来创建三维等高线图,该函数要求输入数据均采用二维网格式的矩阵坐标。同时,它可以在每个网格点(x,y)处计算出一个 z 值。

以下示例展示了如何绘制三维正弦等高线图。代码如下:

  • from mpl_toolkits import mplot3d
  • import numpy as np
  • import matplotlib.pyplot as plt
  • def f(x, y):
  • return np.sin(np.sqrt(x ** 2 + y ** 2))
  • #构建x、y数据
  • x = np.linspace(-6, 6, 30)
  • y = np.linspace(-6, 6, 30)
  • #将数据网格化处理
  • X, Y = np.meshgrid(x, y)
  • Z = f(X, Y)
  • fig = plt.figure()
  • ax = plt.axes(projection='3d')
  • #50表示在z轴方向等高线的高度层级,binary颜色从白色变成黑色
  • ax.contour3D(X, Y, Z, 50, cmap='binary')
  • ax.set_xlabel('x')
  • ax.set_ylabel('y')
  • ax.set_zlabel('z')
  • ax.set_title('3D contour')
  • plt.show()

输出结果图如下:

三维绘图
图3:绘制三维轮廓图

3D线框图

线框图同样要采用二维网格形式的数据,与绘制等高线图类似。

线框图可以将数据投影到指定的三维表面上,并输出可视化程度较高的三维效果图。通过 plot_wireframe() 能够绘制 3D 线框图。代码如下:

  • from mpl_toolkits import mplot3d
  • import numpy as np
  • import matplotlib.pyplot as plt
  • #要绘制函数图像
  • def f(x, y):
  • return np.sin(np.sqrt(x ** 2 + y ** 2))
  • #准备x,y数据
  • x = np.linspace(-6, 6, 30)
  • y = np.linspace(-6, 6, 30)
  • #生成x、y网格化数据
  • X, Y = np.meshgrid(x, y)
  • #准备z值
  • Z = f(X, Y)
  • #绘制图像
  • fig = plt.figure()
  • ax = plt.axes(projection='3d')
  • #调用绘制线框图的函数plot_wireframe()
  • ax.plot_wireframe(X, Y, Z, color='black')
  • ax.set_title('wireframe')
  • plt.show()

输出结果如下:


图4:Matplotlib绘制线框图

3D曲面图

曲面图表示一个指定的因变量y与两个自变量xz之间的函数关系。

3D 曲面图是一个三维图形,它非常类似于线框图。不同之处在于,线框图的每个面都由多边形填充而成。Matplotlib 提供的 plot_surface() 函数可以绘制 3D 曲面图,该函数需要接受三个参数值 x,y 和 z 。示例代码如下:

  • from mpl_toolkits import mplot3d
  • import numpy as np
  • import matplotlib.pyplot as plt
  • #求向量积(outer()方法又称外积)
  • x = np.outer(np.linspace(-2, 2, 30), np.ones(30))
  • #矩阵转置
  • y = x.copy().T
  • #数据z
  • z = np.cos(x ** 2 + y ** 2)
  • #绘制曲面图
  • fig = plt.figure()
  • ax = plt.axes(projection='3d')
  • 调用plot_surface()函数
  • ax.plot_surface(x, y, z,cmap='viridis', edgecolor='none')
  • ax.set_title('Surface plot')
  • plt.show()

输出结果图:

Matplotlib绘制表面图
图5:Matplotlib绘制曲面图
方便获取更多学习、工作、生活信息请关注本站微信公众号城东书院 微信服务号城东书院 微信订阅号
推荐内容
相关内容
栏目更新
栏目热门