迁移学习是一种非常强大的深度学习技术,在不同的领域有着各种应用。迁移学习的思想很简单,可以用类比来解释。假设你想学习一种新的语言,比如西班牙语,那么从你已经知道的另一种语言,比如说英语开始学起,可能会有所帮助。
遵循这一思路,计算机视觉研究人员通常使用预先训练的 CNN 为新任务生成表示,其中新任务数据集可能不够大,无法从头开始训练整个 CNN。另一个常见的策略是采用预先训练好的 ImageNet 网络,然后对整个网络进行微调以完成新任务。
InceptionV3 网络是由 Google 开发的一个非常深的卷积网络。Keras 实现了完整的网络,如下图所示,它是在 ImageNet 上预先训练好的。这个模型的默认输入尺寸是 299×299,有三个通道。
这个框架的例子受 Keras 网站上的在线模型(https://keras.io/applications/)启发。假设在一个域中有一个与 ImageNet 不同的训练数据集 D。D 具有 1024 个输入特征和 200 个输出类别。
现在我们有了一个新的深度网络,它重新使用了标准的 Inception-v3 网络,但是它通过迁移学习在一个新的领域 D 上进行了训练。
当然,有许多参数可以精确调整以达到较好的精度。但是,现在正在通过迁移学习重新使用一个非常大的预训练网络作为起点。这样做可以通过重新使用 Keras 中已有的功能来节省训练成本。
截至 2017 年,“计算机视觉”问题(在图像中找到模式的问题)被认为已经解决了,这个问题对生活有很大影响。例如:
论文“Dermatologist-level classification of skin cancer with deep neural networks”(Andre Esteva,Brett Kuprel,Roberto A.Novoa,Justin Ko,Susan M.Swetter,Helen M.Blau & Sebastian Thrun,2017)使用由 2032 种不同疾病组成的 129450 张临床图像的数据集训练 CNN。他们通过 21 位经过认证的皮肤科医师对活检证实的临床图像进行二元分类,分别区分角质形成单元癌与良性脂溢性角化病、恶性黑色素瘤与良性痣。CNN 与人类专家在这两项任务上都达到了同样的水平,证明了人工智能在进行皮肤癌分类中能够与皮肤科医生相媲美。
论文“High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks”(Krzysztof J.Geras,Stacey Wolfson,S.Gene Kim,LindaMoy,KyunghyunCho)提出一种有望提高乳腺癌筛查过程效率的新架构,可以处理四种标准的视图或角度。与常用的自然图像 DCN 架构(这种架构适用于 224×224 像素的图像)相比,MV-DCN 还能够使用 2600×2000 像素的分辨率。