Go语言程序可以使用通道进行多个 goroutine 间的数据交换,但这仅仅是数据同步中的一种方法。通道内部的实现依然使用了各种锁,因此优雅代码的代价是性能。在某些轻量级的场合,原子访问(atomic包)、互斥锁(sync.Mutex)以及等待组(sync.WaitGroup)能最大程度满足需求。
本节只讲解原子访问,互斥锁和等待组将在接下来的两节中讲解。
当多线程并发运行的程序竞争访问和修改同一块资源时,会发生竞态问题。
下面的代码中有一个 ID 生成器,每次调用生成器将会生成一个不会重复的顺序序号,使用 10 个并发生成序号,观察 10 个并发后的结果。
竞态检测的具体代码:
package main
import (
"fmt"
"sync/atomic"
)
var (
// 序列号
seq int64
)
// 序列号生成器
func GenID() int64 {
// 尝试原子的增加序列号
atomic.AddInt64(&seq, 1)
return seq
}
func main() {
//生成10个并发序列号
for i := 0; i < 10; i++ {
go GenID()
}
fmt.Println(GenID())
}
代码说明如下:
在运行程序时,为运行参数加入-race参数,开启运行时(runtime)对竞态问题的分析,命令如下:
代码运行发生宕机,输出信息如下:
根据报错信息,第 18 行有竞态问题,根据 atomic.AddInt64() 的参数声明,这个函数会将修改后的值以返回值方式传出。下面代码对加粗部分进行了修改:
func GenID() int64 {
// 尝试原子的增加序列号
return atomic.AddInt64(&seq, 1)
}
再次运行:
代码输出如下:
没有发生竞态问题,程序运行正常。
本例中只是对变量进行增减操作,虽然可以使用互斥锁(sync.Mutex)解决竞态问题,但是对性能消耗较大。在这种情况下,推荐使用原子操作(atomic)进行变量操作。