起泡排序,别名“冒泡排序”,该算法的核心思想是将无序表中的所有记录,通过两两比较关键字,得出升序序列或者降序序列。
例如,对无序表{49,38,65,97,76,13,27,49}进行升序排序的具体实现过程如图 1 所示:
如图 1 所示是对无序表的第一次起泡排序,最终将无序表中的最大值 97 找到并存储在表的最后一个位置。具体实现过程为:
由于 97 已经判断为最大值,所以第二次冒泡排序时就需要找出除 97 之外的无序表中的最大值,比较过程和第一次完全相同。
经过第二次冒泡,最终找到了除 97 之外的又一个最大值 76,比较过程完全一样,这里不再描述。
通过一趟趟的比较,一个个的“最大值”被找到并移动到相应位置,直到检测到表中数据已经有序,或者比较次数等同于表中含有记录的个数,排序结束,这就是起泡排序。
起泡排序的具体实现代码为:
#include <stdio.h>
//交换 a 和 b 的位置的函数
void swap(int *a, int *b);
int main()
{
int array[8] = {49,38,65,97,76,13,27,49};
int i, j;
int key;
//有多少记录,就需要多少次冒泡,当比较过程,所有记录都按照升序排列时,排序结束
for (i = 0; i < 8; i++){
key=0;//每次开始冒泡前,初始化 key 值为 0
//每次起泡从下标为 0 开始,到 8-i 结束
for (j = 0; j+1<8-i; j++){
if (array[j] > array[j+1]){
key=1;
swap(&array[j], &array[j+1]);
}
}
//如果 key 值为 0,表明表中记录排序完成
if (key==0) {
break;
}
}
for (i = 0; i < 8; i++){
printf("%d ", array[i]);
}
return 0;
}
void swap(int *a, int *b){
int temp;
temp = *a;
*a = *b;
*b = temp;
}
运行结果为:
使用起泡排序算法,其时间复杂度同实际表中数据的无序程度有关。若表中记录本身为正序存放,则整个排序过程只需进行 n-1(n 为表中记录的个数)次比较,且不需要移动记录;若表中记录为逆序存放(最坏的情况),则需要 n-1趟排序,进行 n(n-1)/2 次比较和数据的移动。所以该算法的时间复杂度为O(n2)。