求100以内的所有勾股数。
所谓勾股数,是指能够构成直角三角形三条边的三个正整数(a,b,c)。
根据“勾股数”定义,所求三角形三边应满足条件 a2 + b2 = c2。可以在所求范围内利用穷举法找出满足条件的数。
采用穷举法求解时,最容易想到的一种方法是利用3个循环语句分别控制变最a、b、c的取值范围,第1层控制变量a,取值范围是1〜100。在a值确定的情况下再确定b值,即第2层控制变量b,为了避免结果有重复现象,b的取值范围是a+1〜100。a、b的值已确定,利用穷举法在b+1〜100范围内一个一个的去比较,看当前c值是否满足条件 a2 + b2 = c2,若满足,则输出当前a、b、c的值,否则继续寻找。主要代码如下:
//...
for(a=l; a<=100; a++) /*确定a的取值*/
for(b=a+l; b<=100; b++) /*确定b的取值*/
for(c=b+l; c<=100; c++) /*确定c的取值*/
if(a*a+b*b==c*c)
printf ("%d\t%d\t%d\n", a, b, c) /*判断三个变量是否满足勾股数条件*/
//...
但是上述算法的效率比较低,根据 a2 + b2 = c2 这个条件,在a、b值确定的情况下,没必要再利用循环一个一个去寻找c值。若a、b、c是一组勾股数,则 a2 + b2 的平方根一定等于c,c的平方应该等于a、b的平方和,所以可将的平方根赋给c,再判断c的平方是否等于。根据“勾股数”定义将变量定义为整型,a2 + b2 的平方根不一定为整数, 但变量c的类型为整型,将一个实数赋给一个整型变量时,可将实数强制转换为整型(舍弃小数点之后的部分)然后再赋值,这种情况下得到的c的平方与原来的的值肯定不相等,所以可利用这一条件进行判断。
下面是完整的代码:
#include<stdio.h>
#include<math.h>
int main()
{
int a, b, c, count=0;
printf("100以内的勾股数有:\n");
printf(" a b c a b c a b c a b c\n");
/*求100以内勾股数*/
for(a=1; a<=100; a++)
for(b=a+1; b<=100; b++)
{
c=(int)sqrt(a*a+b*b); /*求c值*/
if(c*c==a*a+b*b && a+b>c && a+c>b && b+c>a && c<=100) /*判断c的平方是否等于a2+b2*/
{
printf("%4d %4d %4d ", a, b, c);
count++;
if(count%4==0) /*每输出4组解就换行*/
printf("\n");
}
}
printf("\n");
return 0;
}
运行结果: